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Preface

1t is probably true quite generally that in the history of human thinking
the most fruitful developments frequently take place at those points
where two different lines of thought meet. Hence, if they actually meet,
that is, if they are at least so much related to each other that a real
interaction can take place, then one may hope that new and interesting
developments may follow.

Werner Heisenberg

This volume contains papers presented at the July 1991 NATO Advanced
Study Institute Probabilistic and Stochastic Methods in Analysis with Appli-
cations. The conference was held at the beautiful Il Ciocco resort near Lucca,
in the glorious Tuscany region of northern ltaly. The dynamic interaction
between world-renowned scientists from the usually disparate communities
of pure mathematicians and applied scientists, which occurred at our 1989
ASI, Fourier Analysis and its Applications, continued at this meeting.

Probability has been an important part of mathematics for more than
three centuries. Moreover, its importance has grown in recent decades with
continuing increases in computational power. Faster and more powerful dig-
ital computers, now readily available to almost all scientists, have enabled
them to use probabilistic and stochastic techniques to attack real-world prob-
lems not considered feasible only a few years ago. This approach has been
used in such engineering areas as: speech and image processing, including
the recent approaches employing wavelets, geophysical exploration, radar,
sonar, etc.—and was a major focus of our ASI.

Among the papers to be found herein on these subjects are three ex-
ceptionally clear expositions on wavelets, frames, and their applications by
John Benedetto, Stéphane Jaffard, and Stéphane Mallat; an illuminating de-
scription of holography and other image processing techniques by Walter
Schempp; and interesting works on sampling theory and methods by Charly
Grochenig, Bill Heller, Christian Houdré, Keh-Shin Lii, and Tapan Sarkar.

Part of the conference was devoted to the connections between proba-
bility and partial differential equations, an area of extremely active current
research. The reader will see how these fields have united, yielding new
insight into known analytic facts, such as probabilistic representations of
solutions to elliptic and parabolic PDE’s.  Furthermore, this unification is
providing both new and simplified approaches to classical problems in prob-
ability, such as the PDE method for large deviation problems. Highlights
of this section of the proceedings are in-depth introductions to stochastic
optimal control and filtering theory—both new research fields of particular

vii
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interest for applications, presented by two recognized experts, Piermarco
Cannarsa and Gopinath Kallianpur.

Another part of the conference dealt with the application of probabilis-
tic techniques to mathematical analysis. The lovely paper by Jean-Pierre
Kahane, a true pioneer in this field, is a standout among the many wonder-
ful works in this volume. Babar Saffari, describing the use of probability
methods in Fourier analysis, presents a very complex subject with excep-
tional clarity.

Finally, there are several papers which are difficult to categorize but
a joy to read. Two such are Gavin Brown’s clear explanation of normal
numbers and dynamical systems, and Don Newman’s thought-provoking
foray into those aspects of probability which have a protound intluence upon
our daily lives.

The cooperation of many individuals and organizations was required
in order to make the conference the success that it was. The financial sponsors
are listed on the ‘Acknowledgements’ page. In addition, I wish to express
my sincere appreciation to my assistants, Marcia and jennifer Byrnes and
Nicole Conte, for their invaluable aid. I am also graieful to Kathryn Ha
greaves and Karl Berry, our TgXnicians, for the:r superiative work ¢n »ff
printed and emailed aspects of the conference, trom the initial application
to this volume Their extraordinary ctfort in Tp¥ing these proceedinga, -
sulting in one of the few NATO proceedings whoere all papers are identioe’
typeset, deserves special acclamation. Finally, my hearttelt thankes to the li
Ciocco staft, especially Bruno Giannasy and Alberte safiredini, for oftering
an ideal setting, not to mention the magniticend meals, that prometed i
productive interaction between the participants ot tie vonierence. Ail o e
above. the other speakers, and the remaining conterves. made it possibie 1or
our Advanced Study Institute, and this volume, to tultili the stated NATC
objectives ot disseminating advanced knowledge ancd o tering interanoe !
scientific contacts.

December 25, 1991 O A R AN I SR TN
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Wavelets and analysis of partial differential equations

Stéphane Jaftard

CERMA,

Ecole Nationale des Ponts et Chaussées

La Courtine, 93167 Noisy-le-grand  France
sj@antigone.enpc.fr

£

& We describe the main properties of decompositions in orthonormal bases
of wavelets. We then apply them to the theoretical and numerical study of
some partial differential equations.

1. Introduction

In the seventies and the eighties, alternative methods to Fourier analysis
appeared independenily in many fields of science and technology. Let us
mention oil detection, analysis of speech, quantum mechanics, image analy-
sis, analysis of turbulent flows, multigrid methods, the theory of interpola-
tion between functional spaces, the propagation of singularities of nonlinear
partial differential equations PDE’s, etc.

Wavelets comprise a mathematical tool which lies behind these new
methods. We have two purposes in this paper. We give a survey of the
construction of wavelets and related orthonormal bases, and we also show
how certain specific properties of wavelets make them an important tool
in the theoretical and numerical study of PDE’s. We also give at the end a
large bibliography.

2. Localization in the phase space

The mathematical evolution that led to wavelets and related constructions
can be interpreted as the construction of successive bases of functions with
the following aim: the decomposition on these bases yields the sharpest
possible information on the time and frequency behavior of the analysed
signal or function.

Such constructions are important in signal analysis (a recording of
speech or music clearly contains localized parts which have a specific fre-
quency), in quantum mechanics (to study probability waves) or in the study
of partial differential operators.

3
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The first step was obtained by the Fourier series. The two main draw-
backs of Fourier analysis are that it is not local and that it is difficult to use
when dealing with other spaces than L2 or the Sobolev spaces H*.

The problem of having a stable decomposition for other spaces than L.
led Alfred Haar to the so-called Haar system constructed as follows.

Let ¢ be the characteristic function of [0, 1/2), and { = d(x)—p(x—1/2).
The collection of all the ¥; « (j € Z, k £ Z), defined by

Vi (x) = 2129 (2x — k)

forms an orthonormal basis of L2(R), and the decomposition makes sense
also in the [V spaces. The drawback is that the decomposition on this system
does not give sharp frequency information, since the function y» does not
have a good frequency localization. Wavelets provide a way to avoid this.
Before describing the constructions of wavelet and wavelet-type bases,
let us give some general results on “doubly-localized” orthonormal bases.
T. Steger proved [3] that L2 does not admit a basis of the following form

ibix

filx) = e *g;(x — a;)

where the a; would be such that sup || g ||c< oo, for an ¢ > 0, where
oy 2= [0+ Tata) 2 e [(1+ €20 Fate 1 e

The optimal result was obtained by J. Bourgain who found a basis where this
estimate holds with € = 0 (see [3]).

Actually, if we accept to mix in the same function positive and negative
frequencies of the same value, this obstruction no more stands, and there
exists an orthonormal basis of L?(R) of the following form (see [9])

w@,u(X] = Cb(x - n-)
Winlx) = V2&(x - 3)cos(2nlx)if L £0,1 + n e 2Z
= V2¢(x ~ §)sin(27n0x)if L £0,L+n € 2Z + 1,
where ¢ and ¢ have exponential decay.
The fact that we do not try to separate positive and negative frequencies
of the same amplitude means, in the signal analysis terminology, that we
study the real signal, and not the corresponding analytical signal.

Independently, H. Malvar (see [25]) obtained a basis of the following
similar form

Uk, =w(x — Usin[n(k + 3)(x - U],

where w is compactly supported.
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R. Coifman and Y. Meyer generalized this construction into the com-
pletely adaptative form that follows (see {4})

U1 = \/L%wl(x]sin [ﬂ(k + %)X [ Ql}
1
where q, is an increasing sequence of real numbers such that a; — +co when
| = +ooand a; — —oo when | — —o0; L| = a1 — a; and wy is compactly
supported, essentially on the interval [ai, ai, 1.
More precisely, let €| satisfy a; + €; < a;,1 — €1, 1. Then one chooses
wy such that

= 05 wif{x) €1,

= wi(x) =lon[ag +€,ai1— €l

» wi(x) = 0 outside [ay —er,ai, 1 + €141,

o if x ¢ [ay - €, ar+€], wi(x) =wi_y(2a; ~x)and wf(x)+w{;1(x) =]

Notice that in order to compute the coefficients of a function on such
a basis, we need to perform a pointwise multiplication, and then to com-
pute Fourier coefficients. Clearly, the whole decomposition is obtained in
O(Nlog(N}) operations. ‘

We have here a huge collection of orthonormal bases, roughly speaking,
as many as the possible partitions of 9 by segments of arbitrary length. This
richness will be used for data compression: for a given signal, we want to
determine a basis on which the signal has the “smallest” decomposition. For
that, we need an algorithm which allows us to go easily from one basis to
another. Let us describe the following recipe due to V. Wickerhauser ([S]).

Let A be the space spanned by the (u (}cz (which are the functions
corresponding to a given window). The space A = A U A, has exactly
the same structure as a space A.,, with a window between a; and a;, », and
a function w which is

wit) = \ﬂv—fﬂl—ﬁhw%,,ﬁ

Hence, we can replace two adjacent windows by a larger one without chang-
ing anything else.

The algorithm of representation of a function is the following: for a
given f, we start by its decomposition using small windows all of the same
width, and we merge two such windows, when there is an advantage in
doing so. We iterate this procedure as long as needed, and obtain at the end
a segmentation adapted to the signal. We still have to choose a criterion for
deciding when we merge two windows together. The one chosen is given
by a kind of “entropy minimization”.
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(

Suppose we have a familly of orthonormal bases ei‘"" (t). For each «

the signal f is decomposed on the corresponding orthonormal basis by

flt) =Y ci*ef™ (1)
i
and we want to minimize the entropy

Ele) — _ Z lcga)

)]

2
log

(o)
o

At each step, we calculate the entropy for the two windows and for the large
one, and we merge the windows if the corresponding entropy decreases.

3. Construction of wavelets and wavelet packets

3.1. Multiresolution analysis

We shall now describe another collection of bases, which are a generalization
of the classical wavelets, and will also supply a family of orthonormal bases
for which the same entropy minimization algorithms are used. But let us
first recall the construction of wavelets by a multiresolution analysis and the
fast wavelet decomposition, both introduced by S. Mallat (see [24]). We shall
stick to the dimension 1 for the sake of simplicity. A multiresolution analysis
is an increasing sequence (V;);cz of closed subspaces of [.2 such that

= 1V =1{0]

« JVjis densein L?

e f(x) € Vi & f(2x) € Vi! 1

e flx) e Vo fix+1)e Vo

« There is a function g in Vo such that the g(x — k)kez form a Riesz basis
of Vo.

We also require g to be smooth and well localized.

A simple example of multiresolution analysis is obtained by taking for
V; the space of continuous and piecewise linear functions on the intervals
k279, (k + 1)277], j,k € Z. A possible choice for g is the “hat” function,
which is the function of V, taking the value 1 for x = 0 and vanishing at the
other integers. It is easy to orthonormalise the set g(x — k) by choosing

(&) = 9(8) (Y lgle+ 2kn)lz)~‘/2

Then, the ¢(x — k) form an orthonormal basis of V.
Define Wj as the orthogonal complement of V;in V;,,. One imme-
diately checks that the W; are mutually orthogonal, and their direct sum is
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equal to L2. By a similar procedure which led to the construction of ¢, we

can obtain a function 1y such that the {(x — k) form an orthonormal basis of

W.. Since the Wj are obtained from each other by dilation, and are mutually

orthogonal, the functions 2i/24(2)x ~ k) form an orthonormal basis of L%(3).
Let us now come back to the orthogonal decomposition

vo=v_,@w_,. (3.1)

We have two orthonormal bases of V,: the first one is the vZ{{(2x—k}, k € Z,
and the second one is the union of the ¢{x — k) and ¥ (x — k).

The existence of two bases implies the existence of an isometry mapping
the coordinates in the first basis on the coordinates in the second basis. Let
us describe more precisely this isometry. Let h, and gi be

hy = %J o(x/2)é(x — k)dx

Qk———i

Let f € Vo and let us write its decomposition on the two bases of Vo given
by (3.1).

fix) =) _clolx—k)

! jw(x/zub(x- K)dx.

and, similarly
dl =25 ) chok-n
k

Suppose now that a signal is given by a sequence of discrete values ¢. We can
consider that it is the coefficients of a function of Vo on the ¢(x—k). Theisom-
etry transforming the sequence cﬁ into (CL, d,‘() can be written F = (Fo,Fy)
where Fo and Fy are commuting with even translations: they are discrete
convolutions where we only keep each other term. In the terminology of
signal analysis, Fo and F are said to be quadrature mirror filters. This notion

Wavelets and analysis of partial differential equations '}
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x }

has been introduced in 1977 by D. Esteban and C. Galand for improving the
quality of digital transmission of sound. Iterating | j | —1 times the filter Fo
and then applying once the filter Fy, we obtain the coefficients on the ;i
for j € 0. Each level requires only a discrete convolution. This algorithm
constitutes the fast wavelet transform (see [24]). Of course the decision to
apply Fo n times and F, once is rather arbitrary, and we could decide to ran-
domly apply Fo and Fy a certain number of times. This idea leads to wavelet
packets which are a family of orthonormal bases of L% corresponding to all
the “admissible” ways of applying these filters.

Let us come back to our initial problem of finding bases well localized
in phase space. The adaptative Fourier windows and the wavelet packets do
not give a satisfactory answer to this problem. Itis therefore remarkable that,
though they do not have this type of localization, they provide very efficient
data compression algorithms. But the problem of finding an adaptative
algorithm which gives good localization in phase space is still open (by
good, we mean comparable to the localization of any of the commonly
used wavelet bases). Because of this lack of localization, up to now only
the “classical wavelets” have been used to study operators and PDE’s, and
therefore, only these bases will appear in the following.

4. Analysis of partial differential equations

4.1. Wavelet method for elliptic problems

Consider an elliptic problem, such as the Poisson problem, on a bounded
domain. Let us first recall some properties of its resolution by Galerkin
methods based on finite elements or of finite differences.

One of the main difficulties in these methods is that, once the prob-
lem has been properly discretized, one has to solve a system which is ill-
conditioned. Typically, for a second order elliptic problem in two dimen-
sions, one obtains a matrix M such that

k = [[MI[ IM™1| = O(1/h?%)

where h is the size of the discretization (see [28]). Such ill-conditioning has
two drawbacks; itleads to numerical instabilities and to slow convergence for
iterative resolution algorithms. In order to avoid this problem, one usually
uses a preconditioning, which amounts to finding an easily invertible matrix
D such that D-'MD~! (or D~'M, depending on the method used) will
have a better condition number «. For the example we considered, the
usual preconditioning methods on general domains (SSOR or DKR on a
conjugate gradient method, for instance) make « become O(1/h). We shall
give a wavelet method for which « = O(1) (see[13]). This result requires
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the construction of wavelets adapted to the domain € (see [17]); they are an
orthonormal basis of L2(Q) composed of functions ;i (i > 0) such that

| 3%W; k(x) [< C27%2" 2 exp(~y2' | x k27 ))

for | a |[< 2m — 2, and a positive y.

The decay estimates show that {s; « and its partial derivatives are es-
sentially centered around k2~/ with a width 277. In the following, wavelets
will be indexed by A = k273,

Actually, though these wavelets are not the same as in the case O = R",
they are “almost” the same; that is, numerically, only the wavelets that are
close to the boundary are modified. Thus, we can essentially keep the fast
decomposition algorithms, with only small modifications near the boundary.

Let us now describe the method of resolution for the Poisson equation.
It is performed by a standard Galerkin method, keeping all the wavelets
up to a frequency Jo. If we solve a Laplacian on a domain with Dirichlet
boundary conditions, we have to invert a matrix

(Maa) = ({(Tda | TUa)).

We now renormalize the wavelets for the Sobolev H' norm, that is we
consider that the functions on which the problem is discretized are the

Yy = 27,
The condition number of the corresponding matrix is then bounded inde-
pendently of the size discretization h = 2~'*. Thus, a conjugate gradient

method will converge in a bounded number of steps, no matter how precise
we require the solution to be. We shall explain this result in the next part
by comparing it with multigrid algorithms. Let us also mention that, if we
use smooth wavelets, the order of accuracy of the method is extremely good
since it is driven by the local regularity of the problem (as opposed to spectral
methods, for instance).

4.2. Wavelet and multigrid algorithms

A conjugate gradient method converges slowly when the condition number
is large. Actually, the convergence is rather fast on the subspaces corre-
sponding to the largest eigenvalues, but slow for the small eigenvalues. For
an elliptic problem, small eigenvalues are associated to smooth, slowly oscil-
lating functions (i.e., to wavelets indexed by a small j), and large eigenvalues
to high frequency functions (i.e., to wavelets indexed by a large j).

Roughly speaking, in a multigrid method, one starts by making a
few steps of conjugate gradient, until the high frequency component of
the solution is well approximated; the error is then a comparatively low
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frequency function, which can thus be accurately calculated on a grid with
a double-size mesh. The resolution on the larger grid is performed again by
the same method, and one iterates this procedure. The part of the solution
which has frequencies around 2! is thus calculated on the grid of size 271
This is precisely what is performed on the wavelet method we described.
The splitting on functions defined on meshes of differentsizes (which is done
in multigrid algorithms) is also performed by the wavelet decomposition.
The essential difference is the following: it is the decomposition on wavelets
and the recomposition which is iterative (by the fast algorithms described
in section 2.2), but the resolution is just done once by a conjugate gradient.
Actually, when the function is written in its wavelet decomposition

f= ZZ Cialix,
ik

each block 3, C;.«Wj.« has its frequencies around 2, so that the purpose
of the renormalisation that we make (multiply the terms of this block by
277) is to bring all the eigenvalues ot the matrix M close together so that a
conjugate gradient will converge fast. The multigrid method just works the
other way round: the iterative decomposition according to the frequencies
is performed during the resolution.

4.3. Analysis of singular operators

Let us mention a recent extension of the ideas developed in Section 4.1 to
obtain estimates of the Green function of some singular elliptic operators
(see [12)). Consider the following operator

Alu) = -V{aVu) +u

where the function a is positive, smooth, but may vanish. Suppose further-
more that a has a zero of order larger than 2 where it vanishes. Then the
following estimates on the Green function of A and its derivatives hold

C
| x —y |n-2tlalripl sup| fa(x)aly),ix —y |2)'

This is obtained, as in the case of elliptic operators, by showing that A
and A~ are “almost diagonal” in a wavelet basis.

| 029%G(x,y) i<

Xy

5. Nonlinear evolution equations

The numerical study of nonlinear evolution equations is a field where
wavelets should be very useful. The solutions of these equations often
have singularities which then propagate (even when the initial value is



{u Wavelets and analysis of partial differential equations }

smooth). The local analysis of the regularity performed by wavelets and
their properties of local approximation (see [16, 15]) can give ground to a
justification of this hope. Several numerical experiments have been done
for the one-dimensional Burgers equation (see for instance [11, 21, 22]). A
recent extension to Korteweg de Vries equation has also been implemented
([18]). Consider the following Burgers equation to which is added a small
viscosity term

The methods used all consist of a finite difference discretization in time and
a wavelet decomposition in space. A possible scheme is the following

2
Unbl _un +u“aun :ea Un‘
At ox 9x?
where U, represents the solution at the time nAt. Here the nonlinear term
is treated explicitely, but the viscosity term appears implicitely. Knowing
U, by its wavelets coefficients, we want to calculate U, ;. In order to
compute the wavelet coefficients of the nonlinear term U, 9(%“, we can either
compute the values of U, and %s on a regular grid (using the Fast Wavelet
Transform) or try to obtain more or less explicit formulas for the wavelet
coefficients of such products (this last issue is now studied). The choice of
an implicit algorithm obliges us to compute {Id — eAté‘l:T ) of a function
given by its wavelet decomposition. This is performed by computing once
for all

(ld - eAtgax—Iy)ﬁl (Bj k) =06j..

Since this computation is rather costly, it doesn’t allow for changing the time
scale At during the calculation. An explicit scheme using different time
scales is being studied by Bacry, Mallat and Papanicolaou at the Courant
Institute. These methods give the solution with a very good accuracy, espe-
cially near the shock where the oscillations are small and very well localized.
Adaptative schemes with a iocal refinement around the shock are studied.
The tracking of the shock is very easy since it takes place where the large
wavelet coefficients are.
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2 A wavelet basis is an orthonormal basis for L= ™, the space of square-
integrable functions on the real line, of the form fg. . .-, where g.._ ¢

27 7g 2"t krand gisasingle fixed function, the wavelet. Each multireso-
Iution analvsis for L0 determines such a basis. To find ¢ muitiresolution
analysis, one can begin with a dilation equation t t Seor 2 kN
the solution 1 (the scaling function) satisfies certain requirements, then a
multiresolution analvsis and hence a wavelet basis will follow  This pa
per surveyvs methods of achieving this goal  Two separate problems are
involved: first, solving a general dilation equation to ind a scaling tune-
tion, and second, determining when such a scaling function will generate
a multiresolution analysis. We present two methods tor solving dilation
equations, one based on the use of the Fourier transform and one operating
in the time domain utilizing linear algebra. The second method character-
izes all continuous, imteprable scaling functions. We also present methods
of determining when a multiresolution analvsis will follow from the scaling
tunction. We discuss simple conditions o1, the coetficients . which are
“almost” sufficient to ensure the existence of a wavelet basis, in particular,
thev do ensure that (g, .2 18 a tight frame, and we present more com-
plicated necessary and sufficient conditions for the generation of a multires-
olution analysis. The results presented are due mamnly to Cohen, Colella,
Daubechies, Heil, Lagarias, Lawton, Mallat, and Mever, although several of
the results have been independently investigated by other groups imclud-
ing Berger, Cavaretta, Dahmen, Deslauriers, Dubuc, Dy, Eirola, Gregory,
Levin, Micchelli, Prautzsch, and Wang

1. Introduction

The Haar system is the classical example of an affine, or wavelet, orthonor-
mal basis for the space L 4[?R) of square-integrable functions on the real line.

t We thank David Colella of The MITRE Corporation, MclLean, Virgima, for his
collaboration on ~ome of the results reported in this paper. and for his review of this
document.
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It consists of a set of translations and dilations of a single function, the i laar
wavelet W(t) = X012 — Xy 2.1, where Xy is the characteristic function
of the set E. Precisely, the Haar system has the form ' 'n oo, where
Uar (t) == 2™ 212"t k). Such a simply-generated orthonorinal basis is
verv appealing; however, the fact that the Haar wavelet is discontinuous
severely limits the usefulness of the Haar system in applications. Recently,
examp\e> of other, smooth wavelets which generate affine orthonorma: *ases

have been given, the first bv Mever [28]. Meyer’s example is an intiiicly
differentiable function which has a compactly supported Fourier transtorn
Additional examples have been given by Lemarié [26] and Battle (11 (k-titnes
differentiable with exponential decay), Daubechies [12] (k-times diiteren-
tiable with compact support), and others. Such smooth wavelets are Detter
suited to applications than the Haar wavelet; for example, thev have heon
used in speech compression [8, 7].

Soon after Meyer’s initial example, Mallat and Mever proved that voch
multiresolution analysis for L*(R) determines a wavelet basis (27 1™
of the wavelet bases mentioned above are determined bv an appropriate
multiresolution nalysis {although not all wavelet bases are assocra vtk
multiresolution analyses). A multiresolution analysis { V. fhis denio 6o

a sequence of subspaces 'V, nog of | 2("W) such that

Ve Z Viuogtoralln,

V= .0,

) V. is densein [ “1™), and

3 RtV Vo e M2t VL,

“d b —
~ o~

together with a function ¢ = Vo such that the codection of intece o
lates of £, it - XV - farms an orthonormal basis tor Voo Goven w0

multiresolution analvsi> we have f = Vo = Voo As b =ei20 0000 L
orthonormal basis for V', there must therefore exist scalars st i
r{ty cht{it k1. R
he &

This is reterred to as e anduced) dilation equation, and s soiud” 9
the scaling function. 1t can be proved that it we define the wavelet

alth Y i When w2t K

kES

{where N is as defined below), then g will generate an orthonormal basis for
L (M) of the form WOnkin ke ol cf. Section 4. From [1.2), it tollows that proper-
ties of the wavelet g such as continuity, differentiability, etc., are determined
by the corresponding properties of the scaling tunction f
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Remark 1.1. For the Haar system,
Ve = (h: his constant on each interval{k, k + 1)1,

the induced dilation equation is f(t) = f(2t) + (2t — 1) (i.e, c¢ = ¢y = |
and all other ¢, == 0), the scaling function is f = X0 71, and the wavelet is the
Haar wavelet gt} = P (t) = f(2t) — (2t — 1).

To tind wavelet bases for L2(R), it suffices to construct multiresolution
analvses. One method of achieving this is the following. Choose a set of
coetficients ¢y, and solve the corresponding dilation equation (1.1) for the
scaling runction f. If f is orthogonal to each of its integer translates then

~

define V¢ to be the span of the integer translates of f and define V. forn .. I
as the appropriate dilation of V¢ (ie, Vi = spanifaiec). If 7V, = 0
and if V., is dense in L#[R) then ('V,, ", f} is a multiresolution analysis, and
therefore the wavelet g defined by {1.2) will generate an affine orthonormal
basis for [<(M). If this is the case then we say that the coefficients ¢, have
determined the multiresolution analysis [V, rl.

There are obviously two separate difficulties in this app-oach, namety,

1) solving a given dilation equation to find a scaling function, and

2) determining conditions under which a multiresolution analvsis will
follow from such a scaling function, i.e., conditions under which 1 will
be orthogonal to its integer translates, etc.

We survey results on these two problems in this paper. A shorter survey,
which also includes a discussion of the application of wavelets to fast siynal
processing algorithms, is {33].

The first problem, that of solving a general dilation equation, is not
restricted in application to waveiet theory. In particular, dilation equations
play a role in spline theorv, interpolation and subdivision methods, and
smooth curve generation [2, 4, 5, 17, 20, 19, 29, 30]. Although we tocus
in this paper on resulis by roups invoived in wavelet research (including
Cohen, Colella, Daubechies, Heil, Lagarias, [awton, Mailat, and Mever),
many of the same or related results have been independently obtained by
sroups involved in these other areas (including Berger, Cavaretta, Dabmen,
Deslauriers, Dubuc, Dyn, Eirola, Gregory, Levin, Micchelli, Prautzsch, and
Wang). In some cases, results by these other groups were obtained earlier or
are more complete than the ones we discuss.

In Sections 2 and 3 we consider two methods of solving general dilation
equations. The methods in Section 2 are based on the use of the Fourier
transform. We prove results due to Daubechies and Lagarias showing that
every dilation equation has a solution in the sense of distributions .nd
that integrable solutions, if they cxist, are unique up to multiplication by a
constant. We then present results of Daubechies and Mallat which show
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when integrable solutions to dilation equations will exist, and resuits of
Colella and Heil showing when they will not (these results do not completely
characterize those dilation equations which have integrable solutions).

In Section 3 we present a time-domain based method for solving certain
dilation equations, due to Daubechies and Lagarias, which utilizes linear
algebra. This method produces continuous, integrable scaling functions if
appropriate conditions hold. Colella and Heil have proved that this method
characterizes those dilation equations which have continuous, integrable
solutions.

In Section 4 we consider the second problem. We show that if the
coefficients {c).} determine a multiresolution analysis then necessarily

ZCZK:ZCZKHZ] (1.3)
[N k

and

ch Cri21 = 200, forevery le 2, (1.4)
Kk

where d;; is the Kronecker delta, i.e., d;; = 1if i = j and 0 otherwise. We then
prove a result due to Lawton which shows that (1.3) and (1.4} are “almost”
sufficient to generate a wavelet orthonormal basis. In particular, Lawton
kas proved that if (1.3} and (1.4) are satisfied then {g,\}n.1c2 will be a tight
frame, i.e., the reconstruction property

h=) (howlgn forall he [2(R) (1.5)

n.k

will be satisfied, although !ank!n kez need not be an orthogonal set. (The
general theory of frames was developed by Duffin and Schaeffer in [18]
in connection with nonharmonic Fourier series. The connection between
frames and wavelet theory is surveyed in [23], and researched in depth in
(13].) We also discuss more complicated conditions, independently derived
by Lawton and Cohen, which are both necessary and sufficient to ensure
that a multiresolution analysis, and therefore a wavelet orthonormal basis,
is generated. Lawton has proved that almost all choices of coefficients (c !
which satisfy (1.3) and (1.4) also satisfy these conditions for orthogonality.

For simplicity of presentation, we assume throughout this paper that
coefficients |cy | are given which arereal with only ¢, ..., cn nonzero, i.e., we
consider only Daubechies-type wavelets). In Sections 2 and 3, we assume in
addition that (1.3) is satisfied. These conditions are not necessary for many
of the proofs, and many of the results in which they are necessary can be
modified for more general situations. The fact that the coefficients {c, | are
real implies that the scaling function f will be real-valued.
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Given these restrictions, the Haar system is of course the only example
with N = 1. It can be shown that multiresolution analyses can be produced
only when N is odd. We will use the case N = 3 to illustrate many of
the results in this paper. For this case, assumption (1.3) reduces to the
statement co + ¢y = ¢y +¢3 = 1, i.e., the collection of four-coefficient dilation
equations with the given restrictions is a two-parameter family. We select the
independent parameters to be ¢o and c3, and represent this collection of four-
coefficient dilation equations as the (co,c3)-plane. Figure 1.1 shows several
geometrical objects in the (co,c3)-plane. The following results regarding
these geometrical objects are discussed in this paper.

1) There are no integrable solutions to dilation equations corresponding
to points on or outside the ellipse, with the single exception of the point
(1,1).

2) There do exist integrable solutions to dilation equations corresponding
to points on and inside the circle, and inside the shaded region.

3} There are continuous, integrable solutions to dilation equations in a
large portion of the triangle, and no continuous, integrable solutions
outside the triangle.

4) There are differentiable, integrable solutions to dilation equations on
the solid portion of the dashed line.

5) Each point on the circle, with the single exception of the point (1,1},
determines a multiresolution analysis and therefore a wavelet basis for
L?(R). We refer to this circle as the circle of orthogonality.

Throughout this paper, L"(R) will denote the Lebesgue space of p-
integrable functions on the real line, with norm {|f|},, = ([ if(t)|? dt)‘ " for
1 < p < ooand ||f|« = esssupif(t)]. The inner product of functions f, g
is (f,g) = [f(t) g(t) dt. The Fourier transform of an integrable function f
is f(y) = j’f(t) eivt dt. Integrals with unspecified limits are over the entire
real line.

2. Fourier methods

By considering the Fourier transform of the dilation equation, we can prove
that every dilation equatiori has a solution in the sense of distributions.
Consideration of the smoothness and decay of the Fourier transforms of
these distributions can indicate whether or not these distributions are given
by functions on the real line. We assume throughout this section that (1.3)
is satisfied.

Some notation is required to adequately describe distributions. We let
S(R) denote the Schwartz space of infinitely differentiable, rapidly decreas-
ing functions on the real line, and let §'(R) denote its topological dual, the
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Figure 1.1: Circle of orthogonality, ellipse, line, triangle, and shaded
region.

space of tempered distributions. For functions ¢ we define the translation
operator T,@(t} = @(t — a) and the dilation operator D o(t) = ¢fat).
Translation and dilation of a distribution v < S'(R) is defined bv duality, i.e,
Tev, @) = (v,T_q9) and (D,v,@) = a~ v, D, 1 ). With this notation,
the dilation equation (1.1) has the form £ = 3 ¢, D, T f. Thaiefore, we say
that v & S$'(R) is a scaling distribution if

v=3Y aD;Tw,
k

e, if (v,p) =3 e (DaThv, @) for all ¢ € S(R). By taking Fourier trans-
forms, we therefore have that v is a scaling distribution if and only if

Dyv =meov,
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where mo(y) = (1/2) 3 ci €'*Y. If it is the case that Vv is a function on R then
this is equivalent to

V(2y) = mol(y)vIY) forae. vy e R (2.1)

Assume now that ¥ is a continuous function on R.  Then we
can iterate (2.1), obtaining (formally) v(y) = ¥(y/2™) [} moly/2’) —
¥(0) T17 moly/2}). Daubechies established that this infinite product
converges, and proved with Lagarias the following result, cf. [12, 15].

Theorem 2.1.

1) Ply) = [17° mo(y/2') converges uniformly on compact sets to a con-
tinuous function which has polynomial growth at infinity.

2) Define f to be the tempered distribution such that f = P. Then f(2y) =
mo(y) f(y) for all v, so fis a scaling distribution. The support of f is
contained in [0, N].

3) If vis another scaling distribution such that v is a function on R which
is continuous at zero then v = v(0) f.

4) If a nonzero integrable solution to (1.1) exists then it is f, up to multi-
plication by a constant, and [ f(t)dt = 1.

We call the distribution f defined in Theorem 2.1 the canonical scaling
distribution. Other solutions to the dilation equation are given in [15], and
certain classes of solutions are characterized in [11].

The proof of Theorem 2.1 requires only that 3~ ¢, = 2; if this is not the
case then a canonical solution of the dilation equation can still be defined,
but the uniqueness results of Theorem 2.1 will not hold. Even with the
assumption J_ ¢y = 2, uniqueness in function spaces other than L'{R) may
not hold. For example, the Hilbert transform Hv of any solution v of a
dilation equation is also a solution of the same dilation equation. Since H
maps L") into L"(R) for 1 < p < oo, uniqueness cannot hold in any of
these spaces. Additional uniqueness criteria and methods of generating new
solutions to dilation equations from known solutions are given in [11}].

Existence of an integrable solution of a dilation equation is not guaran-
teed. The following, from [11], is an easily checkable necessary condition for
the existence of such solutions, based on the fact that the Fourier transtorm
of an integrable solution must decay at infinity.

Theorem 2.2. Given x € [0, 271). Assume that the set
Ix mod 2m,2x mod 27, ...,2" " 'x mod 27

is invariant mod 2m under multiplication by 2. If

n-1}

I Ime2'x)i 21 and mol27'x) £#0  forallj = |
i1
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then the canonical scaling distribution is not an integrable function, and
therefore there do not exist any integrable solutions to (1.1).

Remark 2.3. Consider the case N = 3. The set {2nt/3,4n/3} is invariant
mod 27 under multiplication by 2, and jmo{(27/3) mo{47/3)1 = 1 for all
(co,c3) on and outside the ellipse shown in Figure 1.1. The additional
hypotheses of Theorem 2.2 are also satisfied for all but countably many of
these points, and therefore for almost no point on or outside the ellipse can
an integrable solution to the corresponding dilation equation exist. All but
one of the countably many remaining points are also eliminated when the
3-cycle {2n/7,4n/7,8m/7} is checked in addition [11]. The remaining single
point is (1, 1); the integrable solution to the dilation equation corresponding
to this pointis f = (1/3)X| 3.

Theorem 2.2 deals with non-existence of integrable solutions by estab-
lishing conditions under which the Fourier transform P = f of the canonical
scaling distribution f will not decay at infinity. Alternatively, by imposing
sufficient decay on f we can obtain f € LZ(R), and therefore f € L'(R)
since f has compact support. This is made precise in the next theorem, due
to Daubechies [12]. The notation used in the theorem is as follows. Since
2mo(n) = T (—N*ck = ¥ cax — 3 c2xs1 = 0, we can factor a term of the
form 1 + e" from mo(y). If the zero at 7t has multiplicity at least L then

mo(y) = ((1 + ¢'Y)/2)L Q(y), and therefore
oo . L o

ity = [T motv/2 = (572) [T Qu/2)
i1

i1

Theorem 2.4.

1) If |Qllac < 247'/2 then the canonical scaling distribution f is an inte-
grable function.

2) If||Qllc < 21" then the canonical scaling distribution f is a continu-
ous, integrable function.

Proof. We prove only the first statement.

Set M{y) = I’[‘,"’ Q(y/2)); this is a continuous function. Define R =
IIM - X -1 1)ll; then since M(2y} = Q(y) M(y) we have [M - X|_n 2njl €
IQIIX R, whence IM(y)| < Cly['8:IQll= for some constant C. Therefore,

siny/Z)"“

f 1sC’<
iyl /2
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where p = 2L - 1 ~ 2log, ||Ql|e and C’ is another constant. Since p > 0,
((siny/2)/(y/2))"'7 is integrable, and therefore f € [2(R). Hence f €
L%(R), and therefore f is integrable since it has compact support.

Remark 2.5. For N = 3, the multiplicity L is one except for those points on
the dashed line shown in Figure 1.1; for those points, L = 2.

The region of points {co, c3) for which the hypotheses of the first part of
Theorem 2.4 is satisfied with L = 1is the shaded region shown in Figure 1.1,
i.e., integrable scaling functions exist for all points in this region [11] (see
also Remark 2.7 for an additional region).

No points in the {co, c3)-plane satisfy the second part of Theorem 2.4
withL = 1. ForL = 2,i.e,, c3 = 1/2—co, Theorem 2.4 implies that continuous
solutions exist for —1/4 < co < 3/4. Thisresult is inferior to the one obtained
in Section 3, where it is shown that continuous scaling functions occur on
this line precisely when —1/2 < ¢o < 1, and in fact are differentiable if
0 < cp < 1/2 (i.e., on the solid portion of the line shown in Figure 1.1).
Moreover, it is shown in Section 3 that continuous scaling functions occur
over a large region of the {co.c3)-plane, including the regions shown in
Figures 3.1-3.6.

Eirola has taken a different (but still Fourier-based) approach in [21].
He obtains conditions under which scaling functions will be continuous and
estimates for the Sovolev exponent of continuity for these scaling functions.
In Section 3 we discuss a time-domain method for obtainirg esiimates for
the Holder exponent of continuity of scaling functions.

We end this section with an adaptation of an existence result due to
Mallat [27]; part of the proof we give is due to Lawton {24].

Theorem 2.6. If
Imoly)i% + Imoly + )12 €1 for all vy,

then the canonical scaling distribution is an integrable function.

Proof. Set

Un(Y) = Xj_gnm2nm (v) - [T moly). (2.2)
i

By Theorem 2.1, u, converges uniformly on compact sets to the Fourier



transform of the canonical scaling distribution f. Now,
2" n 2
lunll3 = J_M Hmo (%)[ dy
i
2" n 2 2rmn n
[ @+ [ ()
2 Y\ P Y NI vy
=J, (e G me (G <) TTmo (3)] o

= [[n-113,

and, by a similar argument, |ju1]|3 = 2n. Therefore {u,,] is contained in the
ball in L2(R) of radius v27t and therefore has a weak* accumulation point.
Since un{y) — f{y) pointwise, this accumulation point must be f, whence
f € LZ(R). Since f has compact support, it is therefore integrable as well. Wl

Remark 2.7. For N = 3, equation {2.2) is satisfied for all points (co,cz] on
and inside the circle shown in Figure 1.1. Therefore, there exist integrable
solutions for all dilation equations corresponding to such points. By the
remark following Theorem 2.4, integrable solutions also exist for points in
the shaded region in Figure 1.1. The union of these two regions does not
exhaust the set of four-coefficient dilation equations which have integrable
solutions, cf. [11].

3. Matrix methods

In [16], Daubechies and Lagarias proved sufficient conditions under which
a dilation equation has a continuous, integrable solution (or, more gener-
ally, an integrable and n-times differentiable solution). In particular, they
proved that if the joint spectral radius p(1olv, Tilv) of two N » N matrices
To, 11 (whose entries contain only the coefficients {c}) restricted to a certain
N -- 1 dimensional subspace V is less than one then the canonical scaling
distribution f is a continuous and integrable function, and, moreover, is
Hoélder continuous with Holder exponent o > - log, p(Talv, Thly ). We out-
line this result in this section. In [10], this result is extended to a necessary
and sufficient condition; in particular, it is shown there that the canonical
scaling distribution f is a continuous and integrable function if and only if
plTolw, Tilw) < 1, where W is an appropriate subspace of V, and that in
this case o = —logz p(Tolw. Thlw). Itis conjectured in [10] that W = V in
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general, except for a set of coefficients of measure zero, and it is proved in [9]
that p(Tolw, Thlw) = p{Tolv, Thlv) for all choices of coefficients with N < 3.
We assume throughout this section that (1.3) is satisfied.
Given the coefficients cy}, define the N x N matrices Tp and Ty by
{To)ii = c2i—j—1 and (T1)y; = c2i—. For example, for N = 3 we have

co 0 0 c1 co O
To=1]c2 ¢ co and Ti=1fcy ¢c2 ¢1 .
0 c3 C2 0 0 C3
For x < {0, 1], x # 1/2, define
Tx = 2x, 0<x<«<1/2,
Tl -1, 12<x<T,

ie, if x = .d1d,dz... is the binary decimal expansion of x then 1x =
.dzds.... Although t(1/2) is not uniquely defined, this ambiguity will not
pose any problems in the analysis.

We say that a function f is Holder continuous if there exist constants
K, « such that [f{x] — f(y}| < Kix —yl* for all x, y £ R. The largest such
exponent « is the Holder exponent and the corresponding smallest constant
K is the Holder constant.

The relationship between the dilation equation (1.1} and the matrices
Te, Ty is given in the following result from [16].

Proposition 3.1.

1) Assume f is a continuous and integrable scaling function. Define the
vector-valued function v(x) for x = 0, I by

fix)
fix + 1
vix) ) . (13.1)
flx + N 1)
Then v is continuous on [0, 1" and satisties
vil0) = v (1) =0,

vi 1 {0) v fori=1... N-1,
vix) = Ty,vltx) forx = .didy... < [0, 1], x £ 1/2,

v(1/2) = Tov(1) = Tyv(0), (3.2)
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where v;(x) is the ith component of v(x). Moreover, if f is Holder
continuous with Holder exponent « then the same is true of v.

2) Assume v is a continuous vector-valued function on [0, 1] satisfying
(3.2). Define the function f by

< >
f(x):{o, x <0orx = N, 3.3)

vilx), i—-1<x<ii=1,....N.

Then f is a continuous and integrable scaling function. Moreover, if
v is Holder continuous with Holder exponent « then the same is true
of f.

The fundamental theorem on the existence of continuous, integrable
scaling functions is the following result from [16]. The notation used in the
theorem is as follows. Let V denote the subspace

V=lueRVN:uy+ - +un =0,

and let M be the (N1} - (N—~T}matrix My; = ¢2i ;- Apointx = .dy...d,, =
[0, 1] with a finite binary decimal expansion is called a dyadicpoint.

Theorem 3.2. Fix any norm | - |/ on RN, and assume there exist constants
C >0and 0 < A < 1such that

g Ta v < CA™ 13.4)

for every choice of dy,...,d\n < 0,17 and every m > (. Then the following
statements are true.

1) 1lis asimple eigenvalue of Ty, Ty, and M.

2) M has a right eigenvector (ay,.... an 1) for the eigenvalue 1 such
thatay + -+ an.g = 1.
3) Setv(0) = (0.a1.....an. 11t and define v(x) for x - .dy...dw ~ 0,1
by
vid) - Ty, oo Tq, vI0). 13.5)
Thenvyix) + - +vN(x) - I forevery such x.

4) vis bounded on the set of dyadic points in 10, 1.

5) vis Holder continuous on the set of dyadic points in {0, 1] with Haolder
exponent a = log, A, and has a unique continuous extension to [0, 11
which is Holder continuous with the same exponent «.

6) v satisfies {3.2), and therefore the function f defined by (3.3} is a con-
tinuous, integrable scaling function and is Holder continuous with
exponent .

R
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Proof. Full details of the proof can be found in [16]; we sketch some selected
points below.

1) follows from the fact that V has dimension N — 1 in RN, and that M
is a submatrix of both To and T;.

2) follows from 1) and the fact that (1,..., 1) is a left eigenvector for M
for the eigenvalue 1.
3) Since (1,...,1) is a common left eigenvector for To and T, for the

eigenvalue 1,

vilx) + - +unix) = (1,..., 1) v(x)
=(...,0)Tq,--Tq,v(0)
=(1,...,1)v(0)
=1.
5) Choose any dyadic x = dy...dx € [0,1] and assume y > x is also

dyadic. If 27™7' < y—x < 2™ with m > k then x = .dy...d, and
y=.d1...dmdmi1...dm,; for somej. From 3), v(t™y) — v(0) € V, s0

viy) =vix)ll = ITa, - Ta, (v(t™y) = v(0))]]
< HTay - Ta, v IiHiviT™y) = v(0)]]
<2LCAM
=2L CAA—I (2—~n\~| )——logr A
S2LCA y — xI™ o822,
where L = sup{||lv(t)}| : dyadict < [0,1]] < oo by 4). Thus v is Holder
continuous from the right on the set of dyadic points in [0, 1] with Holder
exponent « > —log, A. A similar proof establishes Holder continuity from
the left.
6) Given x = .d; ...dm dyadic, we have v(x) = Tq,(Tq, - Tq, v(0)) =
T4, v(Tx). By continuity, this holds for all x € [0,1]. W

Examples of norms on RN are [[ull, = (" + - + [uni®)' " for

1 < p <ooand jlufie = max{luil,...,lunl}.
Condition (3.4) is most easily analyzed in a spectral form, as follows.
The joint spectral radius of a set of N « N matrices {A¢,..., A, is the

straightforward generalization of the usual spectral radius of a single matrix,
namely,

plAo. ..., An) = lim sup A,

m—oc

Am = max }”Ad. e Ag ™
Loan
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The joint spectral radius was first introduced by Rota and Strang [32]. Recent
articles are [3, 14].

Lemma 3.3.

1) For every A > p(Ag,..., A, there exists a constant C > 0 such that
Am < CA™ for every m.

2) If there exist C, A > 0 such that A]} < CA™ for every m then
p(AO----‘An) < A

It follows from Lemma 3.3 that {3.4) is equivalent to p{Tolv, Tyiv) < 1
(however, p(Tov, T1iv] = 1is not equivalent to A% < C for every m).

The joint spectral radius can be difficult to compute, except in special
cases. For a single matrix A, p(A} is simply the usual spectral radius of A
and is therefore the largest of the absolute values of the eigenvalues of A.
This is not true in general, i.e., if we define

Om = max  plAg, - Ag, )
dogio, o nl
then plAc,. .., Ay) = 07 = max;plAc), ..., plA, ). However, we do have

the following, cf. [16].

Lemma 3.4.
D on < plAs, ..., Anl A forevery m.
2} plAo....,Aulis independent of the choice of basis, ie, if B is any
invertible matrix then p(BAsB~'... . BA,B ') = plAc..... Al
3) If there exists an invertible matrix B such that BA:B~',....BA, B !
are all simultanecusly svmmetric, then plAs, ... A, = oy,

Berger and Wang have proved that p(Ac,....A,)  limsup v, and
therefore ptAg,.... An) -supoy, 3.

We return now to consideration of the matrices Ty, T1. Since V has di-
mension N -1, an appropriate change of basis gives p{ Toiv, Ti'v) - ptSe. S,
where Se, Sy are (N - 1)« [N - 1) matrices (not necessarily unigue).

Remark 3.5. For N = 3 we can set

. Co 0 l-¢co-¢ ¢
Se - ( ¢ and S, = ¢ : S
cy | Co Cy Q C3

cf. [9). The shaded area in Figure 3.1 shows the set SS of points [ce, c3)
for which S¢ and S can be simultaneously symmetrized with p(S0,51) <«
1. Continuous, integrable scaling functions therefore exist for all points in
this region.
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N

11 N
-1.51
_2.;

Figure 3.1: Region S$ where simultaneous symmetrization is possi-
ble and leads to continuous scaling functions (shaded area).

In the regions where simultaneous symmetrization is not possible,
Lemma 5.4 can be used to estimate the joint spectral radius.

Remark 3.6. Set N = 3, and let C, , be the set of points fco. st sudi
that p(S¢,.S1) « Awm < 1 with the choice of normy - - .. By Theorem 32
continuous, integrable scaling functions exist for all points in anv .,
Figures 3.2-3.4 show C,, ) for several choices of p, i.e., the sets obtained by
considering the matrices So, Sy directly (since Ay - max' 50, 'Sy 00).

Figure 3.5 shows the region (. obtained by considering, for cach
point {co, 1), the Euclidean space norm | - ||, of all 65536 possible products
Sa, -+ S4,. of Sp and S of length 16.

The union of the regions shown in Figures 3.2-3.5, plus the region 55
shown in Figure 3.1, is shown in Figure 3.6. Continuous, integrable scaling
functions therefore exist for all points in the shaded area in Figure 3.6. By
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-1.5¢

51

T

Figure 3.2: The set C; 1 {(shaded area).

Remark 3.10, there are no continuous, integrable scaling functions on or
outside the solid boundary shown in Figure 3.6.

Note that half of the circle of orthogonality lies inside the shaded area
in Figure 3.6, and half lies outside the solid line. Therefore there exist many
wavelet bases with N = 3 for which the wavelet is continuous, ¢f. Figures
3.7 and 38.

For large m, direct computatior. of A, is impractical. The following
algorithm can be used to select a subset of matrices which can be used to
estimate p(Ao,..., An) [10], cf. [18].

Proposition 3.7. Given p > plAo,..., AL,). For each of the matrices
Ao, ..., A, in turn, implement the following recursion.

e Given a product P = Ay, - Ag,,. If |[P||"/™ < p then xeep P as a
building block. Otherwise, repeat this step with each of the products
PAq,...,PA,in turn.

w }
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-1.51

24

Figure 3.3: The set C, 1 (shaded area).

Label the resulting set of building blocks Py, ..., Py, and let m, be the length
of the product P;. Then the following statements hold.

1) Thereis anr > Osuch thatif P = Ay, -~ Ag, is any product of the
matrices Ao,... Ay, then P = P, ... P; R where R is some product of
at most r of the matrices Ao, ..., Al

2) plAa, ... An) S max{|[Pylld ™ Pt me

This algorithm can be used to significantly shorten the time required
to estimate a joint spectral radius.

Remark 3.8. For N = 3 and (co,c3) = (.6, -.2), for which simultaneous
symmetrization is not possible, we compute (using the norm |} - |1} Ay = .737
and Ay; = .682. The computation of Ay; required the calculation of 8192
matrix products; however, the algorithm given in Proposition 3.7 equals
this estimate after only 94 matrix product computations. A deeper search,
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ol

“

Figure 3.4: The set C . (shaded area).

with a maximum matrix product length of 73, required only 14156 ma-
trix product computations and resulted in the estimate p(Sc,S1) < .661.
Even if A73 could be computed it would not improve this estimate, e.g.,
153515415158451517815428,5328, 1} 7" = 663. These computations, and
the significance of the point (co.c3) = (.6,~.2), are explained in detail in
[9]; note, however, that the Holder exponent of continuity for the scal-
ing function determined by the coefficients (co.c3} = (.6, -.2] is at least
—log, .661 ~ .598, and therefore this scaling function is smoother than the
standard four-coefficent example, the Daubechies scaling function D, which
is determined by the coefficients (co,c3) = ((1 + v/3)/4,(1 — /3)/4), and
whose Holder exponent of continuity is approximately .550. These two scal-
ing functions are shown in Figures 3.7 and 3.8. Each of these two choices of
coefficients lies on the circle of orthogonality and determines a multiresolu-
tion analysis for LZ(R).

Theorern 3.2 is extended to a necessary and sufficient condition in [10].

}
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Figure 3.5: The set C; 1, (shaded area).

We briefly indicate now the method used to obtain the converse result. Given
an N « N matrix A and an eigenvalue A of A, set Uy = {u ¢ CN A - =
0 torsome k > 0j. By standard Jordan decomposition techniques we
can write €V = U, + W, where W is a unique A-invariant subspace of C".
Given v € €N we say that v has a component in U, if v = u + w where
u€ Uy, we W,and u # 0. The following result is from {10].

Theorem 3.9. Assume v is a continuous vector-valued function on [0, 1]
such that (3.2) holds, and let T = Ty4,--- T4, be any fixed product of the
matrices To, Ty. Let x € {0, 1] be that point whose binary decimal expansion
is x = .d] ...d.“d| ...dm o If

. 1) Ais an eigenvalue of T|y, and
2) thereis some z € [0, 1] such that v(x) — v(z) has a component in U,,

then |A] < 1 and the Holder exponent of continuity of v is at most
- log, IAI'/™.

| |
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Figure 3.6: Union of the sets $S, C1,1, C2,1, C= 1, and C; 5 (shaded
area); boundary of the set E 14 (solid line).

Since p(Tolv, Tilv) = sup 0w is the supremum of the absolute val-
ues of the eigenvalues of every (Tq, - Ta, v, it follows that if the hy-
potheses of Theorem 3.9 are satisfied for each product 1 = Ta, - T4, then
p(Tolv, Tilv) < 1 with 0w < 1 for all m, and the Holder exponent of v satis-
fies a < —log, p(Tolv, Talv). Therefore, if the hypotheses of Theorem 3.9 are
satisfied for each product T = Tq, --- Tq,, then Theorem 3.9 is the converse
to Theorem 3.2, except for the possibility of one special case, namely,

sUp o =1 and Om < 1 for all m.
m

. It is unknown whether this special case can actually occur. It is proven in
[9] that the hypotheses of Theorem 3.9 are always satisfied if N < 3and it is
conjectured in [10] that they are always satisfied in general except for a set
of coefficients of measure zero. Methods for determining the validity of the
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0.5 , . : ~
0 0.5 1 1.5 2 25 3

Figure 3.7: Scaling function corresponding to {co,c3) = {.6,—~.2).

' ) 05 ! 1.5 2 2.5 3

Figure 3.8: Daubechies scaling function Dy.
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hypotheses of Theorem 3.9 for any specific choice of coefficients are given
in [10].

Remark 3.10. Set N = 3 and define E, = {(co,c3): 0 = 1). By Theorem
3.6, no dilation equation determined by a point in E,, can have a continuous,
integrable solution. The set E is precisely the boundary and exterior of the
triangle shown in Figure 1.1. The solid line in Figure 3.6 shows a numerical
approximation of the boundary of E 1 [9]. By previous remarks, continuous,
integrable scaling functions do exist in the shaded region in Figure 3.6.

The results of this section can be extended from consideration of con-
tinuous solutions to n-times differentiable solutions. If f is such a solution
then its derivatives fli! satisfy the dilation equations

i) =Y 2ecf2t k).
k

Therefore the vector (f'''(1),... 7' (N - 1))tis a right eigenvector for the
matrix M for the eigenvalue 277. As Misan (N — 1) » (N — 1) matrix, f can
therefore possess at most N — 2 derivatives. This can always be achieved for
an appropriate choice of cocfficients [16].

The following modification of Theorem 3.2 for the case of higher deriva-
tives is from [16].

Theorem 3.11. Assume that the coefficients {ci| satisfy the sum rules
S{-1*k'cy, =0forj =0,...,n DefineV, =uec RV :eu=207=
0,....n}, where ¢; = (1',2 ... N} If p(Toly,,Tiiv, ) < 27" then there
exists an n-times differentiable solution f to (1.1}, and the n-th derivative
™ of f is Holder continuous with exponent « = —log, 2" p(Tolv, . Triv, ).

Remark 3.12. For the case N = 3, differentiable solutions can exist only on
the solid portion of the line shown in Figure 1.1. None of these solutions can
be twice differentiable. In particular, for N = 3, no wavelet which generates
an affine orthonormal basis can be differentiable since wavelets must be
derived from points lying inside of the circle of orthogonality.

4. Orthogonality

In this section we consider the relationship between the choice of coefficents
{cy) and frame or basis properties of the associated wavelet. We assume N
is odd in this section.

We require the following lemmas. C.(R) denotes the space of all con-
tinuous functions on R which have compact support. The proof of the first
lemma can be found in [27].

36 }
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Lemma 4.1. If ({Vy}, ) is a multiresolution analysis then [ f(t)dt = 1.

Lemma 4.2. If (1.3) holds then the canonical scaling function f satisfies
Y flt—k)=1ae.

Proof. Set 8o = X[ 1) and 6(t) = }_ cx 85-1(2t — k). Since 8 is continuous,
8(0) = 1, and 8;(2y) = mol(y)6;_1(y), it follows that 8; — f weakly in
L%(M), ie., (8;,h) — (f,h) forall h € L?(R). Note that 5 0o(t — k) = 1 a.e;
by induction, the same is true of 8;, and hence of f. ]

Next, we establish necessary conditions on the coefficients [cy | in order
that a multiresolution analysis exist.

Proposition 4.3. If the coefficients {c\ } determine a multiresolution analysis
then (1.3) and {1.4) hold. The converse is not true.

Proof. Integrating both sides of the dilation equation implies that 3 ¢y = 2,
since J'f(t] dt is nonzero by Lemma 4.1. Since f is orthogonal to its integer
translates,

2501 =2 Jf(t)f(t +1)dt

=2) ¢k jf(Zt—j)fut +2L-- k) dt

ik
= Z Ck Cki 21,
k

so (1.4) holds. This, combined with the fact 3_ ¢y = 2, implies (1.3).

To see that (1.3) and (1.4) are not sufficient, consider the coefficient
choice co = 1, ¢; = -+ = cno1 = 0, cn = 1. These coefficients satisfy
{1.3) and (1.4), yet the canonical scaling function f = (1/N)X;s . is not
orthogonal to its integer translates if N > 1. 1

Remark 4.4. For N = 3, the set of points in the (co,c3)-plane which satisfy
both (1.3)and (1.4) is precisely the circle of orthogonality shown in Figure 1.1.

Equations (1.3) and (1.4) are equivalent to

mo(0} =1 and ma(n) =0 (4.1
and

Ima(y)? + Imaly + > =1 forall . (4.2)

Equation (4.2) implies that, in signal processing terms, mo(y) and mo(y + 7)
form a quadrature mirror filter pair. Such filter pairs induce fast digital signal

Methods of solving dilation equations '}
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processing algorithms, e.g., subband coding. Daubechies has characterized
those trigonometric polynomials mo which satisfy (4.1) and (4.2) in {12].

Although (1.3) and (1.4) are not sufficient to ensure that {cy} will gen-
erate a multiresolution analysis (and therefore that {gnkjn,kez will be an
orthonormal basis), Lawton has proven that (1.3) and (1.4) are sufficient to
ensure that the sequence {gn«}n,kez will satisfy the reconstruction property
(1.5) of an orthonormal basis. Such a sequence is called a tight frame. (1.5)
alone does not imply that {gnx n.kez is an orthogonal sequence or a basis,
i.e, in general the summation in (1.5} is not unique. See [18] or [23] for
exposition on frames and their properties.

The following theorem and proof are from [24].

Theorem 4.5. If the coefficients {cy} satisfy (1.3) and (1.4) then {gnx}n rez is
a tight frame for L2(R).

Proof. We proceed in four steps.

1) From (4.2} and Theorems 2.6 and 2.1, the canonical scaling distribu-
tion f is an integrable function with support contained in [0, N] and satisfies
[flt)dt =1.

2) Define the operator Py, : L?(%R) — L?(R) by

Puh =Y (R fue) fa. (4.3)
k

We claim that P,, - [asn — +ocoand P, = 0as n = —oo, where [ is the
identity operator on L%(%R).

First, however, we show that the operators {P,,} are uniformly bounded
in norm. Since supp(fnx) C Inx = [k/2", (k + N)/2"], with n fixed each
set supp(fni) can intersect at most N other supp(fn;). Therefore, for any
scalars [ay ],

Z Qkfnk
k

1.2
< N! Z(Zmuznf"kné)
2 k
1.2
NV (T la) (4.4)
k

e.g., [22, Prop. 2.4.10]. Therefore,
12
ol < N2 (Xt fan)i?) (4.5)
k

Now, foreachr = 0,...,N — |, the sequence {f,,(in 4 r1}1€2 is an orthogonal
collection of functions since their supports are disjoint. Therefore, by Bessel's

3%}
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inequality, 3" I(h, foinen)l? < JhlI3 13, Combining this with (4.5) we
obtain ||[Pyhll2 < N||f[|3 ||h]l2, and therefore sup ||Pn]j2 < N|ifl|3 < co.

Because the operators [P} are uniformly bounded in norm, to prove
P,h — hasn — +oo for all h € L2{R) it suffices to consider h in a dense

subset of L#(R), say h € C.(R). For such an h, since 5, fni(t) = 2" % ae.
(Lemma 4.2), we can write
5 12
dt)

I = Puhilz = U
12
< N2 (Z 127" 2 h(t) = (h, fui)) nmmﬁ) (4.6)
k

1°2
<N 2 (Tady)
k

where we have used (4.4) again and where

5272 — (h fad) ()
k

Ank = sup 127" Zh(t) — (h, fadl.

teln

To see that Y a2, — Oasn — +oo, define

S L&l

Bnk = sup |h{s) —h(t) and hy == Z BRI X1, ..
K

Note that ha(t) — 0 pointwise as n — +oo since h £ C.(R). Further,
Buk € PBroand I,,x T Lo forall k, so H“ < ho forn = 0. As fu\ is clearly
integrable, it follows from the Lebesgue Dominated Convergence Theorem
that fﬁ,‘(t)dt -~ 0as n — +oo. Now, since J'fnk(t)dt =2"" 2 (Lemma
4.1), we have for t € [, that

>
<

2772 h(t) — (h, fax)l =

J (h(t) = Rls)) s fs) ds
Inx !

([ mer-nintas) (| haisitas)
AU Ly

< I3 B2, an..\(s)ds.

Therefore, 5_, a2, < [Ifli} [hn(s)ds — 0as n — +oo, which, combined
with (4.6), implies that P,h — hin LZ(R)asn — +oo.

A similar proof shows that P,h -+ 0as n — —oo.

3) Define the operator F, : L2(:R) — L*(R) by

Fah =) (h,gnk)gnk.
k
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We claim then that F, = P,y — Py for each n € 2. Using the dilation
equation (1.1) and the definition {1.2) we compute

Puh+ Foh= 3 (h(t),27/2F(2"t — k))2"/2f(2"t — k)
k

+) (h{t),2"2g(2"t — Kk))2" 2g(2"t — k)

N

=2" Y (hlt)ep 2™ Tt 2k~ p))eg f(2M Tt - 2k - q)

K.p.q

+2" Z (R{t), (=1 en_pf2M Tt = 2k —p))

k.pq
(=N¥cn_qf(2™ 't = 2k —q)

=2" Y {hlthlepcy + (=17 Yenpenog 12" T = 2k — p)

p.g.k
«<f(2"t Tt — 2k — q)

1 .
-2 2 D (e etz + (1 engyanen - )
i

k

. /rh“)‘z!nt 11 Zf(znb 't‘"]')>2“” 1i ‘Zf(znolt . U

= ZC(iJNh.f'na Nitfmanin
il

where
.. ] 4
Ci. b = 2Z(Ci et T Yensanen o).
%

It suffices, therefore, to show that C(j,1) = 5;;. Note that by making the

change of index m = -k +j+ 1 - (N- 1)/2 (recall N is odd) in the second
summation, we obtain

< n: 1 i
C(2i,21) - 3 ZCCZi BINSINP I 2 chi—lm 11021 -2m i

m
‘Z
= 3 C2j-k C21-k
2&74

= dj1,

because of hypothesis (1.4). Similar calculations show that C(2j,21 + 1) =
C(2j +1,20) - Oand C(2j + 1,20 + 1) = &;1, as desired.
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4) From steps 2) and 3), 3~ Fn = limy 4 (Pw — P, ) = L. That s, for
heL2(R), h=Y Foh =3 (N dnk) gnk, whence {guin ket is a tight
frame. B

Corollary to 4.5. The coefficients !ci | determine a multiresolution analysis
if and only if

1) (1.3) and (1.4) are satis{ied, and
2) fis orthogonal to each of its integer translates.

In this case, {gnt !n.Le2 is an orthonormal basis for LZ(Mm).

Proof. Because of Proposition 4.3 we need only prove that if 1) and 2)
hold then |cx; determines a multiresolution analysis. From (1.4} and the
orthogonality of the integer translates of f,

I ;%:J )‘Zdt—ZC,ckJ t~1)f(2t"k?dt*ZZ(i*'-

Therefore [f(t - k),ic2 is an orthonormal set and hence is an orthonormal
basis for Vo = span{f(t — k)l cz. Defining Vi, = span!f,i ico, we have
V., < V.1 because fis a scaling function. The operator P,, defined by {4.3]
is then the orthogonal projection of L#(R) onto V... Since P,, — Casn + o
we have 7V, == 0], and similarly 'V, is dense in L2 since Py o [ as
n — +oo. Thus ('V,.}, f)is a multiresolution analysis.

To prove that g in.keg is an orthonormal basis, note that from {1.2],
(1.4), and the orthogonality of the integer translates of f,

b " . . . ] ]
ol =Y (=1 M eneny er D2 Rdt - z;“t = 1.

ik

from the theorem, we know that 'gn. 'n v, ¢ 18 a tight frame, so for m, i - 2
fixed,

2
b= ||9mi“2
g"\, q"'l)’

A\
<gm1. \gmi‘gnk>gnk)
n.k

Z gm)‘an

n.k

Thus (gmi gnk) = dmn djk, i.€,, IGnn in.ne o fOorms an orthonormal set. This,
combined with the tight frame property, implies that {gniin e is an or-
thonormal basis. B
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Lawton and Cohen have independently established necessary and suf-
ficient conditions under which f will be orthogonal to its integer translates.
Lawton’s formulation is the following (24, 25]. (% denotes the space of all
square-summable sequences.

Theorem 4.6. Define the operator G : {2 — ¢2 by

1
(Ga)lzzizkc;ckag“iq\ for acf?.

Then the coefficients {c\ ] determine a multiresolution analysis if and only if

1) (1.3)and (1.4) are satisfied, and
2) o1 is the only eigenvector for G for the eigenvalue 1.

Proof. Note that d¢; is an eigenvector for G for the eigenvalue 1 because
of (1.4), and the sequence a defined by a; = [f(t}f(t + l)dt is also an
eigenvector for G for the eigenvalue 1 since

(GQ)[

il

—;Zcick Jf(t)f(t—21+i—k)dt
ik
;J(ZC' f(t—j)) <ch f(t — 21 —~k)> dt
] 8
1 St t
zf'(z) (3 9)e

= Qp.

i

Therefore, if 5oy is the only eigenvector for G for the eigenvalue 1 then
a; = ¢ d¢y for some constant ¢, so f is orthogonal to its integer translates. The
converse of this statement is proved in [25]. The proof is therefore complete
by the corollary to Theorem 4.5, I

Lawton has proved. using a result of Pollen [31], that except for a
set of measure zero, coefficients which satisfy {1.3) and (1.1} also satisfy
the condition that d.; be the only eigenvector for G for the eigenvalue 1.
Therefore almost all choices of coefficients satisfying (1.3} and (1.4) will
determine a multiresolution analysis.

Cohen’s formulation, which has been shown to be equivalent to Law-
ton’s, is the following [6], cf. [25].

Theorem 4.7. The coefficients 'ci | determine a multiresolution analysis if
and only if

1) (1.3)and (1.4) are satisfied, and _
2) there exists a y & [-7n/2, n/2] such that f{y + 2kn) = 0 for every k € Z.
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Remark 4.8. For N = 3, the set of points satisfying (1.3) and (1.4) is the circle
shown in Figure 1.1. Of these, every point with the single exception of the
point {1, 1) does determine a multiresolution analysis [11].
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g
& Most signal information is carried by irregular structures and transient
phenomena. The mathematical characterization of singularities with Lip-
schitz exponents is reviewed. We explain the theorems that estimate local
Lipschitz exponents of functions, from the evolution across scales of their
wavelet transform. We then prove that the local maxima of a wavelet
transform detect the locations of irregular structures and provide numerical
procedures to compute their Lipschitz exponents. The wavelet transforms
of singularities with fast oscillations have a different behavior that we studv
separately. The local frequency of the oscillations are measured from the
wavelet transform local maxima. It has been shown numerically that one
and two-dimensional signals can be reconstructed, with a good approxima-
tion, from the local maxima of their wavelet transform {16]. As an appli-
cation, we develop an algorithm that removes white noise from signals, by
analyzing the evolution of the wavelet transform maxima across scales.
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1. Introduction

Singularities and irregular structures often carry the most important infor-
mation in signals. In images, the discontinuities of the intensity provide the
locations of the object contours, which are particularly meaningful for recog-
nition purposes. For many other types of signals, from electro-cardiograms
to radar signals, the interesting information is given by transient phenomena
such as peaks. In physics, it is also important to study irregular structures to
infer properties about the underlying physical phenomena (17, 2, 1]. Until
recently, the Fourier transform was the main mathematical tool for analvz-
ing singularities. The Fourier transform is global and provides a description
of the overall regularity of signals, but it is not well adapted for finding
the location and the spatial distribution of singularities. This was a major
motivation for studying the wavelet transform in mathematics {20] and in
applied domains [11]. By decomposing signals into elementary building
blocks that are well localized both in space and frequency, the wavelet trans-
form can characterize the local regularity of signals. The wavelet transtorm
and its main properties are briefly introduced in Section 2. In mathematics,
the local regularity of a function is often measured with Lipschitz exponents.
Section 3 is a tutorial review on Lipschitz exponents and their characteriza-
tion with the Fourier transform and the wavelet transform. We explain the
basic theorems that relate local Lipschitz exponents to the evolution across
scales of the wavelet transform vatues. In practice, these theorems do not
provide simple and direct strategies for detecting, and characterizing singu-
larities in signals. The following sections show that the wavelet transform
local maxima give an efficient approach for studying these singularities.
The detection of singularities with multiscale transforms has been stud-
ied not only in mathematics but also in signal processing. In Section 4, we
explain the relation between the multiscale edge detection algorithms used
in computer vision and the approach of Grossmann {10] based on the phase
of the wavelet transform. The detection of wavelet transform local max-
ima is strongly motivated by these techniques. Section 5 is a mathematical
analysis of the local maxima properties. We prove that local maxima detect
all singularities and that local Lipschitz exponents can often be measured
from their evolution across scales. We derive practical algorithms to ana-
lyze isolated or non-isolated singularities in signals. Numerical examples
illustrate the mathematical results. The wavelet transform has a different
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behavior when singularities have fast oscillations. This particular case is
studied separately. The local frequency of the oscillations can be measured
from the points where the wavelet transform is locally maximum both along
the scale and spatial variables. This approach is closely related to the work
of Escudie and Torresani [9] for measuring the modulation law of asymptotic
signals [8].

Another important issue is to understand whether one can reconstruct
a signal from the local maxima of its wavelet transform. If it is possible, it
allows us to process a signal’s singularities by modifying the local maxima
of its wavelet transform and then reconstruct the corresponding function.
We review the most recent results of Meyer [21] on this completeness is-
sue and describe a numerical algorithm developed by Zhong and one of
us [16], which closely reconstructs a signal from the wavelet local maxima.
One application is the removal of white noise from signals. In such prob-
lems, we often have some prior information on the differences between the
signal singularities and the noise singularities. We describe an algorithm
that differentiates the signal components from the noise, by selecting the
wavelet transform local maxima that correspond to the signal singularities.
After removing the local maxima of the noise fluctuations, we reconstruct a
“denoised” signal.

1.1. Notation

« LP{R) denotes the Hilbert space of measurable, functions such that

e
J 1f(x)” dx < +o00.

—

The norm of f € L?(R) is given by

)12 = J if(x)i% dx.
We denote the convolution of two functions f € L4(R) and g < L2(R)
by

SRR Y

fvglx) 'J flu)g(x ~ u)du.

e

The-Fourier transform of a function f(x) is written f(w) and defined by

flw) = J b fix)e™ ¥ dx.

—oC

For any runction f(x), f.(x) denotes the dilation of f(x) by the s.ale
factor s:

folx) = Lf(x/s).
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2. Continuous wavelet transform

This section reviews the main properties of the wavelet transform. The for-
malism of the continuous wavelet transform was first introduced by Morlet
and Grossmann [11]). Let {(x) be a complex valued function. The function
P(x) is said to be a wavelet if and only if its Fourier transform ¥ (w) satisfies

J‘w [ (w)P? r [ (w)p?

S dw =
o w Jwl

dw = Cy < +0o. (2.1)

This condition implies that

oo
J Y(u)du =0.
Let ¥ (x) = 1y (x/s) be the dilation of {(x) by the scale factor s. The wavelet
transform of a function f € L2(9R) is defined by

Wi(s,x) = f xPg{x). (2.2}

The Fourier transform of Wf{s,x) with respect to the x variable is simply
given by

Wis, @) = flw)(sw). (2.3)

The wavelet transform can easily be extended to tempered distributions,
which is useful for the scope of this paper. For a thorough presentation of
the theory of distributions, the reader might want to consult the book of
Treves [26]. If f(x) is a tempered distribution of order n and if the wavelet
WP(x) is n times continuously differentiable, then the wavelet transform of
f(x] give by (2.2) is well defined. For example, a Dirac 8(x} is a tempered
distribution of order 0 and Wa(s, x) = U (x), if P{x)} is continuous.

One can prove [11] that the wavelet transform is invertible and f(x} is
recovered with the formula

t b
fix) = .;LJ J Wils, u)bu - x) du?s, (2.4)
Cy Jo - ’
where Y ;(x} denotes the complex conjugate of Y« (x). The wavelet transform
Wif(s,x) is a function of the scale s and the spatial position x. The plane
defined by the ordered pair of variables (s, x) is called the scale-space plane
(27]. An arbitrary function F(s,x) is not a priori the wavelet transform of
some function f{x). One can prove that F(s,x) is a wavelet transform if and
only if it satisfies the reproducing kernel equation

o

Flso,xo) = [

=
J Fs, x)K{s0,s,%0,x) dx 45, (2.5)
Jo -

S0}
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with

] +o0 B

K(so, 5, x0,x) = E‘J el — X [x0 ~ u) du. (2.6)
¥ J—oo

The reproducing kernel K(so,s,xo,x} expresses the intrinsic redundancy

between the value of the wavelet transform at (s, x) and its value at (so, x0).

3. Characterization of local regularity with the wavelet transform

As mentioned in the introduction, a remarkable property of the wavelet
transform is its ability to characterize the local regularity of a function. In
mathematics, the local regularity of functions is often measured with Lips-
chitz exponents.

Definition 3.1.

= Let n be a positive integer and n < « < n+ 1. A function f(x) is said
to be Lipschitz a, at xo, if and only if there exists two constants A and
ho > 0, and a polynomial P, (x) of order n such that for h < ho

[f(xo + h) — Pr(h)l < AlRI®. (3.1)

« The function f(x) is uniformly Lipschitz « over the interval |a, b{if and
only if there exists a constant A such that for any xo € la, b[ there exists
a polynomial of order n, P (x), such that equation (3.1} is satisfied for
any xo + h € ]a, b[.

» We call Lipschitz regularity of f(x) at xo the sup of all values « such
that f(x) is Lipschitz « at xo.

» We say that a function is singular at xo if it is not Lipschitz 1 at xo.

A function f(x} which is continuously differentiable at a point is Lips-
chitz 1 at this point. If the derivative of f(x) is bounded but discontinuous
at xo, f(x) is still Lipschitz 1 at xo and following Definition 3.1 we consider
that f(x) is not singular at xo. One can easily prove that if f(x} is Lipschitz «,
for « > n, then f(x) is n times differentiable at xo and the polynomial P, (h)
is the first n + 1 terms of the Taylor series of f(x) at xo. For n = 0, we
have Pn(h) = f(xo). The Lipschitz regularity o, gives an indication of the
differentiability of f(x) but it is more precise. If the Lipschitz regularity «o of
f(x) satisfies n < ap < n+ 1, then we know that f(x) is n times differentiable
at xo but its n'h derivative is a distribution which is singular at xo, and xo
characterizes this singularity.

One can prove that if f(x) is Lipschitz « then its primitive g(x) is
Lipschitz o + 1. However, it is not true that if a function is Lipschitz « at
a point xp, then its derivative is Lipschitz « — 1 at the same point. This is
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due to oscillatory phenomena that are further studied in Section 5.3. On the
opposite, one can prove that if « is not an integer and « > 1, a function
is uniformly Lipschitz « on an interval ]a, b{ if and only if its derivative is
uniformly Lipschitz « — 1 on the same interval. This property enables us
to define negative uniform Lipschitz exponents for tempered distributions.
Integer Lipschitz exponents have a different behavior that is not studied in
this article. Itis necessary to define properly the notion of negative Lipschitz
exponents for tempered distributions because they are often encountered in
numerical computations.

Definition 3.2. Let f(x) be a tempered distribution of finite order. Let a be
a non-integer real number and [q, b} an interval of R. The distribution f(x)
is said to be uniformly Lipschitz o on ]a, bl if and only if its primitive is
uniformly Lipschitz & + 1 on ]a, bl.

For example, the second order primitive of a Dirac is a function which
is piece-wise linear in the neighborhood x = 0. This function is uniformly
Lipschitz 1 in the neighborhood of 0 and thus uniformly Lipschitz o for & < 1.
As a consequence of Definition 3.2, we can see that a Dirac is uniformly
Lipschitz « for a < —1 in the neighborhood of 0. Since Definition 3.2 is not
valid for integer Lipschitz exponents, it does not allow us to conclude that a
Dirac is Lipschitz —1 at 0 but we can derive that its Lipschitz regularity (see
Definition 3.1) is —1 in the neighborhood of 0. Definition 3.2 is global because
uniform Lipschitz exponents are defined over intervals but not at points. Iis
possible to make a local extension of Lipschitz exponents to negative values
through the microlocalization theory of Bony (5, 15], but these sophisticated
results go beyond the scope of this article. For isolated singularities, one can
define pointwise Lipschitz exponents through Definition 3.2. We shall say
that a distribution f(x) has an isolated singularity Lipschitz o at x¢ if and
only if f(x) is uniformly Lipschitz « over an interval |a, b{, with xo « la, bi,
and f(x) is uniformly Lipschitz 1 over any sub-interval of ]a, bl that does not
include xo. For example, a Dirac centered at 0 has an isolated singularity at
x = 0 whose Lipschitz regularity is —1.

A classical tool for measuring the Lipschitz regularity of a function
f(x) is to look at the asymptotic decay of its Fourier transform f(w). One
can prove that a bounded function f(x) is uniformly Lipschitz o over ‘R if it
satisfies:

t o0
J Flw) {1 + lwl®) dw < +oo. (3.2)
This condition is sufficient but not necessary. It gives a global regularity
condition over the whole real line but one cannot derive whether the function
is locally more regular at a particular point xo. This is because the Fourier
transform uniocalizes ths information along the spatial variable x. The
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Fourier transform is therefore not well adapted to measure the local Lipschitz
regularity of functions.

If the wavelet has compact support, the value of Wf(s,x¢) depends
upon the values of f(x) on a neighborhood of xo of size proportional to
the scale s. At fine scales, it provides localized information on f(x). The
following theorems relate the asymptotic decay of the wavelet transform at
small scales to the local Lipschitz regularity. We suppose that the wavelet
P (x) is continuously differentiable and that it has compact support although
this last condition is not strictly necessary. The first theorem is a well known
result and a proof can be found in {13].

Theorem 3.3. Let f(x) € L?(R) and [a, b] be an interval of R. Let 0 < a < 1.
The function f(x) is uniformly Lipschitz « over any interval la + €,b — €[,
with b —a > € > 0,if and only if there exists a constant A, such that for any
x € la +¢,b ~ €[ and any scale s > 0,

[Wf(s,x)| < Acs®. (3.3)

If f(x) € L2(R), for any scale so > 0, by applying the Cauchy-Schwarz
inequality, we can easily prove that the function |[Wf(s, x)|is bounded over
the domain s > so. Hence, (3.3) is really a condition on the asymptotic decay
of [Wf(s, x)|when the scale s goes to zero. The sufficient condition (3.2) based
on the Fourier transform implies that |f(w)| has a decay “faster” than 1/w*.
Equation (3.2) is similar if one considers the scale s as locally “equivalent”
to 1/w. However, in contrast to the Fourier transform condition, {3.3) is a
necessary and sufficient condition and is localized on intervals and not over
the whole real line.

In order to extend Theorem 3.3 to Lipschitz exponents « larger than
1, we must impose that the wavelet Y (x) has enough vanishing moments.
A wavelet {s(x) is said to have n vanishing moments if and only if for all
positive integers k < n, it satisfies

1 oo
J x*Plx}dx = 0. {3.4)

If the wavelet P(x) has n vanishing moments, then Theorem 3.3 remains
valid for any non-integer value o such that 0 < & < n. Let us see how this
extension works, in order to understand the impact of vanishing moments.
Since W({x) has compact support P(w)is n times continuously differentiable,
and one can derive from (3.4) that ¥(w) has a zero of order n at w = 0. For
any integer p < n, u}(w) can be factored into

V(W) = ([iw)PP(w). (3.5)
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In the spatial domain we have

dry’(x)
P(x) = Ik (3.6)
and the function P '(x) satisfies the wavelet admissibility condition (2.1).
The pt* derivative of any function f(x) is well defined in the sense of distri-

butions. Hence,

dav

W(s,x) = £+ bulx) =

(f* sPP)(x) = 5P (%: * wl) (x). (3.7)

The wavelet transform of f(x) with respect to the wavelet {)(x) is thus equal
to the wavelet transform of its ptt derivative, computed with the wavelet
¥'(x), and multiplied by sP. Let p be an integer such that 0 < « —p < 1.
The function f(x} is uniformly Lipschitz « on aninterval |q, b[, if and only if
d’f g uniformly Lipschitz @ — p on the same interval. Since 0 < & —p < 1,
Theorem 3.3 applies to the wavelet transform of 4 defined with respect to
the wavelet ¥!. Theorem 3.3 shows that g;: is uniformly Lipschitz a — p
over intervals Ja + €,b — el if and only if we can find constants A, > 0 such
that forx € la+¢€,b — ¢,

dx?

dvf

ax_"- *L]);(X)% <A s,

Equation (3.7) proves that this is true if and only if
[Wo(s,x)| < A st. (3.8)

Equation (3.8) extends Theorem 3.3 for « < n. If ¥(x) has n vanishing
moments but not n + 1, then the decay of [Wf(s, x)| does not tell us anything
about Lipschitz exponents for « > n. For example, the function f(x) = sin(x)
is uniformly Lipschitz + oo on any interval, butif (x) has exactly n vanishing
moments one can easily prove that the asymptotic decay of {Wf(s,x)| is
equivalent to s™ on any interval. This decay does not allow us to derive
anything on the regularity of the n + 1% derivative of sin(x). For & < 0 and
a ¢ Z,(3.3) of Theorem 3.3 remains valid to characterize uniform Lipschitz
exponents. In this case, we do not need to impose more than one vanishing
moment on the wavelet Y (x). The proof can easily be derived from the
statement of Definition 3.2.

For integer Lipschitz exponents «, (3.3) is necessary but not sufficient to
prove that a function f(x) is uniformly Lipschitz « over intervals Ja+¢,b—el.
If o = 1 and the wavelet has at least two vanishing moments, the class of
functions that satisfy (3.3), for any x € R, is called the Zygmund class.
This class of functions is larger than the set of functions that are uniformly
Lipschitz 1. For example, x log(x) belongs to the Zygmund class although

s1 }
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it is not Lipschitz 1 at x = 0. The reader is referred to Meyer’s book (20] for
more detailed explanations on the Zygmund class.

Theorem 3.3 gives a characterization of the Lipschitz regularity over
intervals but not at a point. The second theorem proved by Jaffard (14]
shows that one can also estimate the Lipschitz regularity of f(x) precisely
at a point xo. The theorem gives a necessary condition and a sufficient
condition but not a necessary and sufficient condition. We suppose that
Y(x) has n vanishing moments, is n times continuously differentiable, and
has compact support. Similar theorems on point-wise derivability have also
been proved by Holschneider and Tchamitchian [13].

Theorem 3.4. Let nbe a positive integer and o < n. Let f(x) € LZ{R). If f(x)
is Lipschitz a at xo , then there exists a constant A such that fo- all points x
in a neighborhood of x¢ and any scale s,

IWf(s,x)] < Als™ +x ~x0|%). (3.9)

Conversely, let & < n be anon-integer value. The function f{x} is Lipschitz «
at xo, if the two following conditions hold.

1) There exists € > 0 and a constant A such that for all points x in a
neighborhood of xc and any scale s

IWf(s,x)] < As®. (3.10)

2) There exists a constant B such that for all points x in a neighborhood
of xp and any scale s

IWf(s,x)1 < B(s“-}-—"i—;—ﬁ—lt—). {3.11)
[log Ix — xall

As a result of Theorem 3.3, we know that (3.10) implies that f(x) is
uniformly Lipschitz € in some neighborhood of xo. The value € can be
arbitrarily small. To interpret (3.9) and (3.11), let us define in the scale-space
the cone of points (s, x) that satisfy

Ix —xol < s.

For (s,x} inside this cone, (3.9) and (3.11) imply that when s goes to zero,
[Wf(s, x)| = O(s*). Below this cone, the value of |Wf(s, x}| is controlled by the
distance of x with respect to xo, but the necessary and sufficient conditions
have different upper bounds. Equation (3.11) means that for (s,x) below
the cone,

_ Ix —xol*
Wils.x)i =0 (Iloglx — %ol I) '
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The behavior of the wavelet transform inside a cone pointing to x¢, and
below this cone, are two components that must often be treated separately.

Theorems 3.3 and 3.4 prove that the wavelet transform is particularly
well adapted to estimate the local regularity of functions. For example,
Holschneider and Tchamitchian [13] used a similar result to analyze the
differentiability of the Riemann-Weierstrass function. As mentioned in the
introduction, we often want to detect and characterize the irregular parts of
signals. Many interesting physical processes yield irregular structures that
are currently being studied [2]. A well known example is the turbulence
for high Reynolds numbers where there is still no comprehensive theory to
understand the nature and repartition of irregular structures [4]. In signal
processing, singularities often carry most of the signal information. In nu-
merical experiments, it is however difficult to apply directly Theorems 3.3
and 3.4 in order to detect singularities and to characterize their Lipschitz ex-
ponents. Indeed, these theorems impose to measure the decay of [Wf(s, x)'
in a whole two-dimensional neighborhood of xq in the scale-space (s.x],
which requires a lot of computation. The next section reviews briefly the
different techniques that have been used to numerically detect singularities
with a wavelet transform. We then explain how singular points are related
to the wavelet transform local maxima.

4. Detection and measurement of singularities

The measurement of the wavelet transform decay, in a whole neighborhood
of a point x, in the scale space (s, x), is numerically expensive. One technique
that is often used in numerical applications, is to only compute the decay
of (Wf(s,x]i at a fixed abscissa x = xo. This means that we measure the
evolution of the wavelet transform along the vertical line that points to x¢ in
the scale space (s, x). Although this appreach can provide a good estimate
of the local Lipschitz exponent in many cases, let us explain through a
simple counterexample why it cannot be used reliably. We suppose that the
wavelet P{x) is symmetrical with respect to 0 and has compact support. Let
fix) = O for x < xo and f{x) = 1 for x = xo. We can derive that Wf(s,x} =
x{{x = xp)/s), where x{x} is the primitive of ${x} with compact support.
Since (x) is symmetrical, x(x] is antisymmetrical and hence x{0} = 0. We
thus derive that forany s » 0, Wf(s,xo) = 0. Since x{x) has compact support,
forany x # xo, there exists a scale s, > Osuch thatif s < s, then Wf{s, x) = 0.
This proves that along each vertical line in the scale-space plane, the wavelet
transform is uniformly zero for scales small enough. If we estimate the local
Lipschitz exponents from the decay of the wavelet transform along vertical
lines, it “looks like” the function f(x) has no singularity although it does
have a discontinuity at xo. The mistake comes from the fact that we did
not measure the decay of the wavelet transform inside a two-dimensional
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neighborhood of xo, as is required by theorems 3.3 and 3.4. Similar counter-
examples are encountered in many usual signals. The function sin(1/x) is
another type of counter-example which is studied in Section 5.3.

In his pioneering work on wavelets, Grossmann [10] gives an approach
to detect singularities with a wavelet which is a Hardy function. A Hardy
function g(x) is a complex function whose Fourier transform satisfies

glw) =0 for w < 0. (4.1)

Let f € L2(R) and Wf(s,x) be the complex wavelet transform built with a
Hardy wavelet. For a fixed scale s, (2.3) implies that the Fourier transform
WH(s, w) is also zero at negative frequencies, so it is also a Hardy function.
Let ¢(s,x) and p(s,x) be respectively the argument and modulus of the
complex number Wf(s,x). The argument ¢(s,x) is also called the phase of
the wavelet transform. Grossmann [10] indicates that in the neighborhood
of an isolated singularity located at xo, the lines in the scale-space (s,x)
where the phase ¢ (s, x) remains constant, converge to the abscissa xo, when
the scale s goes to 0. One can use this observation to detect singularities,
but the phase ¢(s,x) is not sufficient to measure their Lipschitz regularity.
Moreover, the value of ®{s, x) is unstable when the modulus p{s, x} is close to
zero. It is thus necessary to combine the modulus and the phase information
to characterize the different singularities, but no effective method has been
derived yet.

In computer vision, it is extremely important to detect the edges that
appear in images, and many researchers (25, 27, 18, 19, 6] have developed
techniques based on multiscale transforms. These multiscale transforms
are equivalent to a wavelet transform but have been studied before the
development of the wavelet formalism. Let us call a smoothing function
any real function 8(x) such that 8(x} = O(1/(1 + x?)} and whose Fourier
transform satisfies 6(0) # 0. Theintegral of a smoothing function is therefore
nonzero. A smoothing function can be viewed as the impulse response of a
low-pass filter. An important example often used in computer vision is the
Gaussian function. Let 8.(x) = 1/s8(x/s). Edges at the scale s are defined as
local sharp variation points of f(x) smoothed by 0(x). Let us explain haw
to detect these edges with a wavelet transform. Let ' (x) and Y4(x) be the
two wavelets defined by

1iy) = 98(x) 20y . 478(x)
Yl{x) = I and VY (x) = Tl (4.2)

The wavelet transforms defined with respect to each of these wavelets are
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given by:
W'f(s,x) = fx ¥l (x) and W?Z(s,x) = f+WZ(x). (4.3)
1 s sdf, _ _d~ 44
Wi(s,x) =f ( Ix )(X)—sdx(f*es)(X) (4.4
and
d?e d?
2 _ 2479 29 c.a.
W<f(s,x) = f* (s ) ) (x)=s dxz(f 8:)(x). {4.5)

The wavelet transforms W 'f(s, x} and W4f(s, x) are proportional to, respec-
tively, the first and second derivative of f{x) smoothed by 8(x). For a fixed
scale s, the local extrema of W'f(s,x) along the x variable correspond to
the zero-crossings of W2f(s, x) and to the inflection points of f + 95(x) (see
Figure 4.1).

If the wavelet Y2{x) is continuously differentiable, the wavelet trans-
form WZf(s,x) is a differentiable surface in the scale-space plane. Hence.
the zero-crossings of W2f(s, x) define a set of smooth curves that often look
like fingerprints [27]. Let us prove that one can define a particular Hardy
wavelet such that the phase of the wavelet transform remains constant or
changes sign along these fingerprints.

Let 3 (x) be the Hilbert transform of Y2 (x)and Y*(x) = P2 (x) +ip*{x).
The wavelet Y*(x) is a Hardy wavelet. Let W*f(s,x) = f + Yr}(x). The real
part of W*f(s,x) is equal to W2f(s,x). Hence, the phase ¢ (s, x) is equal to
n/2 or —n/2 if and only if W2f(s,x) = 0. Since W*f(s,x} is a continuous
function, the phase ¢{s, x) cannot jump from n/2 to —-7/2 along a connected
line in the scale space, unless the modulus is equal to 0. If the modulus of
W4f(s,x)is equal to 0, the phase is not defined and it can change sign at these
points. Similarly to lines of constant phase, the zero-crossings “fingerprints”
indicate the locations of sharp variation points and singularities but do not
characterize their Lipschitz regularity. We need more information about the
decay of IWZf(s,x)|, in the neighborhood of these zero-crossings lines.

Detecting the zcro-crossings of W2f(s,x) or the local extrema of
W 'f(s,x) are similar procedures but the local extrema approach has several
important advantages. An inflection point of f « 9.(x) can either be a
maximum or a minimum of the absolute value of its first derivative. As in
the abscissa xo and x; of Figure 4.1, the local maxima of the absolute value
of the first derivative are sharp variation points of f « 9,(x} whereas the
minima correspond to slow variations (abscissa xy ). These two types of
inflection points can be distinguished by looking whether an extremum of
[W'f(s,x)| is a maximum or a minimum but they cannot be differentiated
from the zero-crossings of W2f(s,x). For edge or singularity detection,
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we are only interested in the local maxima of |W'f(s,x)|. When detecting
the local maxima of [W'f(s,x)|, we can also keep the value of the wavelet
transform at the corresponding location. With the results of theorems 3.3
and 3.4, we prove in the next section that the values of these local maxima
often characterize the Lipschitz exponents of the signal irregularities.

fx)

Figure 4.1: The extrema of Wf(s,x) and the zero-crossings of
WZf(s,x) are the the inflection points of f x 8.(x). The points of
abscissa xo and x; are sharp variations of f  8.(x) and are local
maxima of W 'f(s, x)|. The local minimum of |W 'f(s, x )i in x; is also
an inflection point but it is a slow variation point.

5. Wavelet transform local maxima

5.1. General properties

By supposing that the wavelet {(x) is the first derivative of a smoothing
function, we impose that {(x) has only one vanishing moment. In general,
we do not want to impose only one vanishing moment because, as explained
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in Section 3, then we cannot estimate Lipschitz exponents larger than 1. In
this section, we study the mathematical properties of the wavelet local max-
ima and explain how to measure Lipschitz exponents. Let us first precisely
define what we mean by local maximum.

Definition 5.1. Let Wit(s, x) be the wavelet transform of a function f{x).

, W
« We call local extremum, any point (se.xo) such that 2%2 2% has a

zero-crossing at x = xo, when x varies.

« We call local maximum, any point (s¢,xe) such that Wif{se.xd =
IWt(s0. xo )l when x belongs to either a right or the left neighborhood
of xo, and Wf(sa.x)! € [Wf(sp, xo )l when x belongs to the other side of
the neighborhood of xo.

« We call maxima line, any connected curve in the scale space (s, x| along
which all points are local maxima.

A local maximum {so, xo ) of the wavelet transform is strictly maximum
either on the right or the left side of the xo. To speak of local maximum of
the wavelet transform is an abuse of language since we really mean a local
maxima of the wavelet transform modulus, but it simplifies the explanations.
The first theorem proves that if the wavelet transform has no maximum in a
neighborhood, then the funciion is uniformly Lipschitz &, for « - n.

Theorem 5.2. Let n be a strictly positive integer. Let (X} be a wavelet
with compact support, n vanishing moments and n times continuously
differentiable. Let f(x) < L'{'a, bl).

« If there exists a scale so > Osuch that forall scales s < scand .- ab .
Wils.x) has no local maxima, then for any ¢ = 0and & - & fixiis
unitormly Lipschitz xonla + ¢.b ¢

s If Y(x) is the n'" derivative ot a smoothing function, then f{xi is uni-
formly Lipschitz n on any suchinterval la + ¢, b - <™.

The proof of this theorem is in Appendix A. In the following, we sup-
pose that ¥(x) is the n™ derivative of a smoothing function. In this case
we can prove that the function is locally Lipschitz a for the integer value
a - n because the wavelet P(x) has no more than n vanishing moments.
Theorem 5.2 implies that on the intervals la + €, b -- ¢l, f(x) has no singu-
larity. Indeed, singularities were defined as points where the function is
not Lipschitz 1. Let us define the closure of the wavelet transform maxima
of f(x) as the set of points xo such that for any ¢ > O and scale s¢ >~ O,
there exists a wavelet transform local maxima at a point (s, xy) that satisfy
Ix} - xol < € and sy < so. This closure 1s the set of points on the real line that
are arbitrarily close to some local maxima in the scale-space (s, x}.
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Corollary to 5.2. "'he closure of the set of points where f(x) is not Lipschitz n
is included in the closure of the wavelet transform maxima of f(x).

This corollary is a straightforward implication of Theorem 5.2. It proves
that all singularities of f(x) can be located by following the maxima lines
when the scale goes to zero. It is however not true that the closure of the
points where f(x) is not Lipschitz n is equal to the closure of the wavelet
transform maxima. Equation (5.10) proves for example that if {(x) is anti-
symmetrical then for f(x) = sin(x), all the points pmr, p € Z, belong to the
closure of the wavelet local maxima, although sin(x) is infinitely continu-
ously differentiable at these points. Let us now study how to use the value of
the wavelet transform maxima in order to estimate the Lipschitz regularity of
f(x) at the points that belong to the closure of the wavelet transform maxima.

5.2. Non-oscillating singularities

In this section, we study the characterization of singularities when locally the
function has no oscillations. The next section explains the potential impact
of oscillations. We suppose that the wavelet {»(x) has compact support, is
n times continuously differentiable and is the n'* derivative of a smoothing
function. The following theorem characterizes a particular class of isolated
singularities from the behavior of the wavelet transform local maxima.

Theorem 5.3. Let f(x} be a tempered distribution whose wavelet transform
is well defined over la, bl and let xo < la,bl. We suppose that there exists
a scale s¢ > 0 and a constant C such that for x £ Ta, bl and s < s¢, all the
maxima of Wf(s, x) belong to a cone defined by

ix = xpl € Cs. (5.1}

Then, at all points x1 < Ta,b{, xy # x¢, f(x] is uniformly Lipschitz n in
a neighborhood of x;. Let @ < n be a non-integer. The function f(x) is
Lipschitz o at xe if and only if there exists a constant A such that each local
maxima (s, x) in the cone defined by (5.1] satisfies

IWTf(s, x)i < As®. (5.2)

The proof of this theorem is given in Appendix B. Equation (5.2) is
equivalent to

log (Wf(s,x)I < log(A) + alog(s). (5.3)

If the wavelet transform maxima satisfy the cone distribution imposed by
Theorem 5.3, (5.3) proves that the Lipschitz regularity at x¢ is the maximum
slope of straight lines that remain above log [Wf(s, x)|, on a logarithmic scale.

Characterization of singularities }
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The fact that all local maxima remain in a cone that points to x¢ implies that
f(x) is Lipschitz n at all points x € la,bl, # xo. Figures 5.2a through 5.2e
show the wavelet transform of a function with isolated singularities that
verify the cone localization hypothesis. To compute this wavelet transform
we used a wavelet with only 1 vanishing moment. The graphs of U (x) and

its primitive 8(x) are shown in Figures 5.1a and 5.1b. The Fourier transform
of Y(x)is

o [sin(w/4))*
Plw) =iw <~Tu74_—) . (5.4)

This wavelet belongs to a class for which the wavelet transform can be
computed with a fast aigorithm [28].

y(x)

E & £ €

<

Lt gt
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Figure 5.1a: Graph a wavelet {(x) with compact support and one
vanishing moment. It is a quadratic spline.

In numerical computations, the input function is not known at all ab-
scissa x but is characterized by a uniform sampling which approximates f(x)
at a resolution that depends upon the sampling interval {16]. These samples
are generally the result of a low-pass filtering of f(x) followed by a uniform
sampling. If we suppose for normalization purpose that the resolution is 1,
then we can compute the wavelet transform of f(x) only at scales larger than
1. When a function is approximated at a finite resolution, strictly speaking, it
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Figure 5.1b: Graph of the primitive 8(x) with compact support.
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Figure 5.2a: In the left neighborhood of the abscissa 0.16, the signal
locally behaves like 1 + (0.16 — x)®2 whereas in the right neigh-
borhood it behaves like 1 + (x — 0.16)°¢. At the abscissa 0.44 the
signal has a discrete Dirac (Lipschitz regularity equal to —1). At0.7,
the Lipschitz regularity is 1.5 and at the abscissa 0.88 the signal is
discontinuous.

is not meaningful to speak about singularities, discontinuities and Lipschitz
exponents. This is illustrated by the fact that we cannot compute the asymp-
totic decay of the wavelet transform amplitude since we cannot compute the
wavelet transform at scales smaller than 1. In practice, we still want to use the
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Figure 5.2b: Wavelet transform between the scales 1 and 28 com-
puted with the wavelet shown in Figure 5.1a. The finer scales are at
the top and the scale varies linearly along the vertical. Black, grey
and white pointsindicate that the wavelet transform has respectively
negative, zero and positive values.

S &

i

Figure 5.2c: Each black point indicates the position of a local maxi-
mum in the wavelet transform shown in Figure 5.2b The singularity
of the derivative cannot be detected at the abscissa 0.7 because the
wavelet has only one vanishing moment.

mathematical tools that describe singularities, even though we are limited
by the resolution of measurements. Suppose that the approximation of f(x)
at the resolution 1is given by a set of samples (fn Jnez with f, = 0forn < ng
and fn = 1 for n > ny, like at the abscissa 0.88 of Figure 5.2a. We would
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Figure 5.2d: Local maxima of the wavelet transform of the signal in
Figure 5.2a, computed with a wavelet with two vanishing moments.
The number of maxima line increases. The singularity of the deriva-
tive at 0.7 can now be detected from the decay of the wavelet local
maxima.

like to say that at the resolution 1, f{x) behaves as if it has a discontinuity at
n = no although it is possible that f(x) is continuous at no but has a sharp
transition at that point which is not visible at the resolution 1. The charac-
terization of singularities from the decay of the wavelet transform enables
us to give a precise meaning to this discontinuity at the resolution 1. Since
we cannot measure the asymptotic decay of the wavelet transform when the
scale goes to 0, we measure the decay of the wavelet transform up to the
finer scale available. The Lipschitz exponents are computed by finding the
coefficient o such that As* approximates at best the decay of [Wf(s, x){ over
a given range of scales larger than 1 (see Figure 5.2b). With this approach,
we can use Lipschitz exponents to characterize the irregularities of discrete
signals. In Figure 5.2b, the discontinuity appears clearly from the fact that
[Wf(s,x)| remains approximatively constant over a large range of scales, in
the neighborhood of the abscissa 0.88. Negative Lipschitz exponents corre-
spond to sharp irregularities where the wavelet transform modulus increases
at fine scales. A sequence (f,),ez with f, = 0for n # ng, and f,, = 1,
can be viewed as the approximation of a Dirac at the resolution 1. At the
abscissa 0.44, the signal of Figure 5.2a has such a discrete Dirac. The wavelet
transform maxima increase proportionally to s~' over a large range of scales,
in the corresponding neighborhood. In the rest of this paper, we suppose
that all numerical experiments are performed on functions approximated at
the resolution 1 and we consider that the decay of the wavelet transform
at scales larger than 1 characterize the Lipschitz exponent of the function

Characterization of singularities }
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Figure 5.2e: Decay of log, |Wf(s,x)| as a function of log,(s) along
the two maxima lines that converge to the point of abscissa 0.16,
computed with the wavelet of Figure 5.1a. The two different slopes
show that the f(x) has a different singular behavior in the left and
right neighborhood of 0.16 and we can distinguish the two exponents
0.2and 0.6.

up to the resolution 1. Fast algorithms to compute the wavelet transform
are described in [16, 12]. We shall not worry anymore about the opposition
between asymptotic measurements and finite resolution.

The local maxima of the wavelet transform of Figure 5.2b are shown
in Figure 5.2c. The black lines indicate the position of the local maxima in
the scale-space. Figure 5.2e gives the value of log, [Wf(s,x)| as a function
of log,(s) along each of the two maxima line that converge to the point of
abscissa 0.16, between the scales 2' and 28. It is interesting to observe that
at fine scales, the slopes of these two maxima lines are different and are
approximatively equal to 0.2 and 0.6. This shows that f(x) behaves like a
function Lipschitz 0.2 in its left neighborhood and a function Lipschitz 0.6 in
its right neighborhood. The Lipschitz regularity of f(x) at 0.16 is 0.2 which
is the smallest slope of the two maxima lines.

At this point one might wonder how to choose the number of vanish-
ing moments to analyze a particular class of signals. If we want to estimate
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the Lipschitz exponents up to a maximum value n, we know that we need a
wavelet with at least n vanishing moments. In Figure 5.2¢, there is one max-
ima line converging to the abscissa 0.7 along which the decay of log/Wf(s, x}|
is proportional to log(s). The signal was built from a function whose deriva-
tive is singular but this cannot be detected from the slope of log [Wf(s,x)|
because the wavelet has only one vanishing moment. Figure 5.2d shows the
maxima line obtained from a wavelet which has two vanishing moments.
The decay of the wavelet transform along the two maxima lines that converge
to the abscissa 0.7 indicates that f(x) is Lipschitz 1.5 at this location. Using
wavelets with more vanishing moments has the advantage of being able to
measure the Lipschitz regularity up to a higher order but it also increases the
number of maxima lines as can be observed by comparing Figure 5.2¢c and
Figure 5.2d. Let us prove this last observation. A wavelet y(x) with n + 1
vanishings moment is the derivative of a wavelet 1'(x) with n vanishing
moments. Similarly to {4.4), we obtain

WH(s,x) :si(f*w;)(x) :siW‘f(s,x). (5.5)
dx ox

The wavelet transform of f(x) defined with respect to Y(x) is proportional
to the derivative of the wavelet transform of f(x) with respect to ¥ '(x).
Hence, the number of local maxima of |Wf(s,x)| is always larger than the
number of local maxima of [W'f(s,x)|. The number of maxima at a given
scale often increases linearly with the number of moments of the wavelet.
In order to minimize the amount of computations, we want to have the
minimum number of maxima necessary to detect the interesting irregular
behavior of the signal. This means that we must choose a wavelet with
as few vanishing moments as possible but with enough moments to detect
the Lipschitz exponents of highest order that we are interested in. Another
related property thatinfluences the number of local maxima is the number of
oscillations of the wavelet ¥{x). For most types of singularities, the number
of maxima lines converging to the singularity depends upon the number of
local extrema of the wavelet itself. A Dirac 5(x) gives a simple verification
of this property since Wb(s,x) = 1/sP(x/s). A wavelet with n vanishing
moments has at least n + 1 local maxima. In numerical computations, it
is better to choose a wavelet with exactly n + 1 local maxima. In image
processing, we often want to detect discontinuities and peaks which have
Lipschitz exponents smaller than 1. It is therefore sufficicnt to use a wavelet
with only one vanishing moment. In signals obtained from turbulent fluids,
interesting structures have a Lipschitz exponent between 0 and 2 [3]. We thus
need a wavelet with two vanishing moments to analyze turbulent structures.

Let us suppose that the wavelet ¥ (x) has a symmetrical support equal
to [-K, K]. We call the cone of influence of x¢ in the scale-space plane the set

Characterization of singularities }
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of points (s, x) that satisfy
Ix — xol < Ks.

It is the set of point (s,x) for which Wf(s,x) is influenced by the value of
f(x) at xo. In order to characterize the regularity of f(x) at a point xp, one
might think that it is sufficient to measure the decay of the wavelet transform
within the cone of influence of xo. Theorem 3.4 proves that this is wrong in
general and that one must also measure the decay of the wavelet transform
below this cone of influence. This is due to oscillations that can create a
singularity at xo. The next theorem shows tha. if we suppose that f(x) has
no such oscillations, then the regularity of f{x) at a point xo is characterized
by the behavior of its wavelet transform along any line that belongs to a
cone strictly smaller than the cone of influence. Section 5.3 explains why
this property is wrong when f(x) oscillates too much. In the following we
suppose that Y({x) is a wavelet which is n times continuously differentiable,
has a support equal to [—K, K], and is equal to the n* derivative of a function
8{x). We also impose that 8(x) is strictly positive on the interval | - K, K[.

Theorem 5.4. Let xo € R, f(x) € LZ(R). We suppose that there exists an
interval la, b[, with xo € |a,b{, and a scale so > 0 such that the wavelet
transform Wf(s,x) has a constant sign for s < se and x € la,b{. Let us
also suppose that there exists a constant B and € > 0 such that for all points
x € la, b[ and any scale s

(Wf(s,x}| < Bs*. (5.6)

Let x = X(s) be a curve in the scale space (s,x) such that [xo0 — X(s)| € Cs,
with C < K. It there exists a constant A such that for any scale s < sy, the
wavelet transform satisfies

[Wf(s,X(s))l < AsY with0<y<n, (5.7)
then f(x) is Lipschitz « at xo, for any a < .

The proof of this theorem is in Appendix C. One can easily prove
that the sign constraint over the wavelet transform of f(x) is equivalent to
imposing that the n'* derivative of f(x) is a distribution whose restriction to
la, bl has a constant sign. Theorem 5.4 shows that the regularity of f(x) is
controlled by the behaviour of its wavelet transform in the cone of influence,
if its n'™ derivative does not have an oscillatory behavior that accelerates in
the neighborhood of xo. A similar theorem can be obtained if we suppose
that the n'* derivative of f(x) has a constant sign over |a, xo[ and ]xo, b] but
changes sign at xo. This means that in the neighborhood of xo, Wf(s,x) has
only one zero-crossing at any fixed scale s which is small enough. When s
goes to zero, the zero-crossing curve converges to the abscissa xo. In this case,
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we need to control the decay of the wavelet transform along two lines that
remain respectively in the left and the right part of the cone of influence of xo.

From Theorem 5.4, one can compute the Lipschitz regularity of non-
isolated singularities from the behavior of the wavelet transform maxima.
We test whether the . ravelet transform has a constant sign in the neighbor-
hood of x¢ by testing, the sign of the wavelet transform local maxima. It is
also sufficient to verify (5.6} along the lines of maxima in the neighborhood
of xo. The Lipschitz regularity of f(x) at xo is computed from the decay of
the wavelet transform along one line of maxima that converges towards xq.
Let us emphasize again that if at each scale the wavelet transform has only
one zero-crossing in a neighborhood of xo, Theorem 5.4 can be extended
by measuring the decay of the wavelet transform along two curves that are
respectively in the left and the right parts of the cone of influence of xo.

A “devil staircase” is an interesting example to illustrate the application
of Theorem 5.4 to the detection of non-isolated singularities. The derivative
of a devil staircase is a Cantor measure. For the devil staircase shown in
Figure 5.4a, the Cantor measure is built recursively as follow. For p =0,
the support of the measure o is the interval [0,1], and it has a uniform
density equal to 1 on [0, 1]. The measure u, is defined by subdividing each
domain where u,_y has a uniform density equal to a constant ¢ > 0, into
three domains whose respective sizes are 1/5, 2/5 and 2/5. The density of
the measure i, is equal to 0 in the central part, to ¢/3 in the first part and
to 2¢/3 in last part (see Figure 5.3). One can verify that J’g upldx) = 1. The
limit measure u, obtained with this iterative process is a Cantor measure.
The devil staircase is defined by:

x
f(x) :J Moo (dX).
QO

Figure 5.4a shows the graph of a devil staircase and Figure 5.4b its wavelet
transform computed with the wavelet of Figure 5.1a. For a devil staircase,
we can prove that the maxima lines converge exactly to the points where the
function f(x) is singular. There is no maxima line that converges to a point
where the function is not singular.

Proof. By definition, the set of points where .ne maxima lines converge is
the closure of the wavelet transform maxima, and the Corollary to 5.2 proves
that it includes the closure of the points where f(x) is singular. For a devil
staircase, the support of the points where f(x) is singular is equal to the
support of the Cantor measure, which is a closed set. It is thus equal to its
closure. For any point xo outside this closed set, we can find a neighborhood
Ixo ~ €,x0 + €[ which does not intersect the support of po(x). On this open
interval, f(x) is constant so for s small enough and x € |xo — €/2,%0 + €/21,
Wif(s,x)is equal to zero. The point xo therefore cannot belong to the closure
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of the wavelet transform maxima. This proves that the closure of the wavelet
transform maxima is included in the singular support of f(x). Since the
opposite is also true, it implies that both sets are equal. [

For the particular devil staircase that we defined, the Lipschitz regu-
larity of each singular point depends upon the location of the point. One
can prove [3] that at all locations, Lipschitz exponent o satisfies

log(2/3) o< log(1/3)

log(2/5) = = log(1/5)

Hence, (5.6) of Theorem 5.4 is verified for ¢ < log(2/3)/log(2/5). Since a
devil staircase is monotonically increasing and our wavelet is the derivative
of a positive function, the wavelet transform remains positive. Theorem 5.4
proves that the local Lipschitz regularity of f(x) at any singular point can be
estimated from the decay of the wavelet transform along the maxima line that
converges to that point. Figure 5.4cshows the position of the maxima lines in
the scale-space. The renormalization properties of the Cantor set appear as
renormalization properties of the graph of maxima lines. Muzy, Bacry and
Arneodo [23] have shown that one can precisely compute the singularity
spectrum f(a) of multifractal signals from the evolution across scales of the
wavelet transform local maxima. These results are particularly interesting
for studying irregular physical phenomena such as turbulences [23].

1/5 2/5

Figure 5.3: Recursive operation for building a multifractal Cantor
measure. The Cantor measure is obtained at the limit of this iterative
procedure.

5.3. Singularities with fast oscillations

If the function f(x) is osciilating quickly in the neighborhood of xo, then one
cannot characterize the Lipschitz regularity of f(x) from the behavior of its
wavelet transform in the cone of influence of xo. We say that a function f{x)
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Figure 5.4a: Devil staircase.

Figure 5.4b: Wavelet transform of the devil staircase computed with
the wavelet of Figure 5.1a. Black and white points indicate respec-
tively that the wavelet transform is zero or strictly positive.

has fast oscillations at x, if and only if there exists « > 0 such that f(x} is not
Lipschitz a at xo but its primitive is Lipschitz a + 1 at xo. This situation occurs
when f(x} is a function which oscillates very quickly and whose singularity
behavior at xo is dominated by these oscillations. The integral of f(x) av-
erages f(x) so the oscillations are attenuated and the Lipschitz exponent at
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Figure 5.4¢: Local maxima of the wavelet transform shown in Fig-
ure 5.4b.

xo increases by more than 1. Singularities with such an oscillatory behavior
have been thoroughly studied in mathematics [29]. A classical example is
the function f(x) = sin(1/x) in the neighborhood of x = 0. This function is
not continuous at 0 but is bounded in the neighborhood of 0 so its Lipschitz
regularity is equal to 0 at x = 0. Let g(x) be a primitive of sin{1/x), one
can easily prove that |g(x) — g{0)| = O(x?) in the neighborhood of x = 0,
so g(x) is Lipschitz 2 at this point. By computing the primitive of f(x), we
increase the Lipschitz exponent by 2 because the oscillations of sin(1/x) are
attenuated by the averaging effect.

Let f(x) be a function with fast oscillations at xo and let g(x) be its
primitive. Let ' (x) be the derivative of y(x). Since g(x) is Lipschit7 o + 1,
the necessary condition (3.9) of Theorem 3.4 implies that in a neighborhood
of xo, the wavelet transform defined with respect to P! (x) satisfies

W'g(s,x)I S A(s' T+ x —xoltt). (5.8)
Similarly to (4.4) we can prove that

Wg(s,x) = g« by(x) = s(f x w)(x) = sWf(s,x).
We thus derive that

Wf(s,x)| € A(s* + tix—xol''). (5.9)
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This equation proves that although f{x) is not Lipschitz «, in the cone of
influence of xo [Wf(s,x)| = O(s). The fact that f{x) is not Lipschitz a cannot
be detected from the decay of [Wf(s,x)| inside the cone of influence of x,,
but by looking at its decay below the cone of influence, as a function ot
Ix — xol. Since f(x) is not Lipschitz «, the necessary condition (3.9) implies
that for (s x) below the cone of influence of xo, the wavelet transform does
not satisfy [Wf(s,x)| = O(]x — xo{* ). When a function has fast oscillations, its
worst singular behavior at a point xo is observed below the cone of influence
of x¢ in the scale-space plane.

Let us study in more detail the case of f(x) = sin(1/x). Since the
primitive is Lipschitz 2, we can take @ = 1. Equation (5.9) implies that in
the cone of influence of 0, the wavelet transform satisfies |Wf(s, x)| = O{s).
Figure 5.4e shows the wavelet transform of sin(1/x). It has a high amplitude
along a curve in the scale space (s, x} which reaches (0,0} below the cone ot
influence of 0. It is along this path in the scale-space that the singular part
of f(x) reaches 0. Let us interpret this curve and prove that it is a parabola.
Through this analysis we derive a procedure to estimate locally the size of
the oscillations of f(x).

The function f(x) = sin{1/x) can be written f{x) = sin{w.x), where
w, = 1,/%% can be viewed as an “instantaneous” frequency. Let us compute
the wavelet transform of a sinusoidal wave of constant frequency we. It
we suppose that the wavelet Y(x} is antisymmetrical, as it is the case in our
numerical computations, from (2.3) we derive that the wavelet transform of
h{x) -= sin{wex) satisfies

IWhis, x}l = :‘cos((vox)NJ(son. (5.10)

For a symmetrical wavelet, the cosine is replace by a sine in the right-hand
side of this equation. For a fixed abscissa x, the decay of ‘Wh(s, x}: as a
function of s is proportional to the decay of [Wiswe)l. If i) reaches its
maxima at w = w,,, then for x fixed, IWh(s, x|Jlis maximum at so = Wy, . Wo.
The scale where [Wh(s, x)i is maximum is inversely proportional to the fre-
quency of the sinusoidal wave. The value of Wh{s, x)depends on the values
of hix) in a neighborhood of size proportional to the scale s, so the fre-
quency measurement is local. Since f(x) = sin{]/x) has an instantaneous
frequency w, - 1,2, for a fixed abscissa x, [Wf(s,x)|is globally maximum
for s ~ €m/wy = emx?. This is why we see in Figure 5.4e that the wavelct
transform has a maximum amplitude along a parabola that converges to
the abscissa 0 in the scale-space. This “instantaneous” frequency measure-
ment is based on an idea that has been developed previously by Escudie
and Torresani [9] for measuring the modulation law of asymptotic signals.
The results of Escudie and Torresani have also been refined by Delprat et
al. [8], who explain how to precisely extract the amplitude and frequency
modulation laws from a complex wavelet transform.

Characterization of singularities }
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Let us now study the behavior of the wavelet transform maxima. The
inflection points of f(x) are located at x = 1/(nn), for n € Z. Since the
wavelet P {x) has only one vanishing moment, all the maxima lines converge
toward the points x = 1/(nn). Since f(x] is continuously differentiable in
the neighborhood of 1/(nm), the wavelet transform along a maxima line
converging to 1/{nn) satisfies

We(s,x)| < Ans. (5.11)

The derivative of f{x) at 1/{nn) is equal to (-1)"* 'n? so one can derive
that A, = O(n?). ltis interesting to observe that along all maxima lines
in the neighborhood of 0, the wavelet transform decays propartionally to
the scale s although f(x) is discontinuous in 0. This singularity in 0 can
however be detected because the constants A, grow to +co when we get
closer to 0. Figure 5.4f displays the local maxima of the wavelet transform
of sin(1/x). In the neighborhood of 0, at fine scales, the maxima line have a
different geometry in the scale space (s, x) due to the aliasing when sampling
sin{1/x], for numerical computations. Let us now introduce the general
maxima points and explain how they are related to the size of the oscillations
of 1(x).

- M\WM‘W\[\/\/\
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Figure 5.4d: Graph of sin(1/x1.

Definition 5.5. We call general maximum of Wit(s,x) a point ts¢, xo 1 where
Wf(s, x), has a strict local maximum within a two-dimensional neighbor-
hood in the scale-space plane (s, x).

Clearly, a general maxima point belongs to a local maxima line as de-
fined by Detinition 5.1. General maxima are points where Wf{s x} reaches
a local maximum when the variables (s, x) vary along a maxima line. Equa-
tion (5.10) proves that the maxima lines of the wavelet transform of sin{wex)
are vertical lines in the scale-space plane [s.x) givenby x - no forn. It
nplawl has one global maxima, for w .- 0, at W, and no other local maxima,
then (5 10} implies that there is only one general maximum along each max-
ima line and it appears at the scale s¢ - @ ‘we. A wavelet equal to the n'™
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Figure 5.4e: Wavelet transform of sin(1/x). The amplitude is n.axi-
mum along a parabola in the scale-space that converges to {0,0) in

7

Figure 5.4f: Local maxima of the wavelet transform.
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derivative of a Gaussian has such a property. If ip(w)| has several local max-
ima, for w > 0, there are several general maxima along each maxima line but
the one where |Wf(s, x)! has the highest value is at the scale so = w,,/wo.
One